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1. INTRODUCTION
1.1 GOALS AND OBJECTIVES

The objective of this dissertation is to describe wave propagation in a ﬂuid-léaded,
homogeneous, transversely isotropic, elastic cylinder of arbitrary thickness and to in-
vestigate the effects of fluid loading on the cut-off frequencies and phase velocities of
various axial shear and plane strain modes.

In particular, the goal is to investigate the cut-off frequencies and phase velocities
of the flexural modes (n=1, where n is the circumferential wavenumber) of wave prop-
agation in the coupled system consisting of a fiber-reinforced cylinder that is filled with
and immersed in an inviscid fluid. To assist in the interpretation of the numerical re-
sults, an analysis of the n=1 modes of wave propagation in fluid-loaded isotropic cyl-
inders, with properties of steel and of soft (linear) rubber, is also conducted.

Since the primary interest is in the propagating modes, branches extending into the
imaginary and complex wavenumber domains are not included in this study. However,
the attenuation of these modes due to the external fluid loading can be obtained directly
from the imaginary part of the complex frequency.

1.2 BACKGROUND
1.2.1 Basic concepts in wave propagation

The following definitions are provided as background information. The text by

Achenbach (1990) provides a comprehensive study on wave propagation in elastic sol-

ids.




1.2.1.1 Phase velocity

A traveling, mechanical wave in one dimension is defined by an expression of the
type f = f (wt—kz), where f, as a function of the spatial coordinate z, time 7, wave-
number %, and radian frequency ®, generally denotes a displacement, a particle.veloc-
ity, or a stress component. The argument ®t — kz is the phase of the wave function.

Points of constant phase are propagated with the phase velocity
c = w/k. (1.1

In an inviscid, compressible fluid, the phase velocity is the velocity of sound in the fluid
(or the acoustic phase velocity).

If c = w/k is complex, the wave function is attenuated. The phase velocity is the
real part of c. The attenuation is defined by the imaginary part of c. Normally, the at-
tenuation is written as an exponential decay as a function of time ¢ or of the spatial co-
ordinate z.
1.2.1.2 Dispersion

If the phase velocity depends on the wavenumber, the system is said to be disper-
sive. Dispersion occurs in inelastic (dissipative) materials and in elastic waveguides,
where a waveguide is any extended body with a cross section of finite dimensions (such
as an infinite plate and an infinitely long cylinder).
1.2.1.3 Group veloci

Group velocity is the velocity of energy transmission in the system. Group velocity




is defined as
c, = do/dk. | (1.2)
Using @ = ck, we can write the group velocity as
c, = c+kdc/dk. (1.3)

If there is dispersion, the group velocity is different from the phase velocity.
1.2.1.4 Frequency equation

The frequency equation is an expression relating @ to k in waveguides. The fre-
quency equation is generally derived from the equations of motion and the boundary
conditions of the system.
1.2.1.5 Branch i ion curv

Solution of the frequency equation yields an infinite number of continuous curves
called branches. A branch displays the relationship between wavenumber and frequen-
cy for a particular mode of propagation. If the branch is dispersive, it is sometimes
called a dispersion curve.
1.2.1.6 Frequency spectrum

A collection of branches is the frequency spectrum of the system. A complete fre-
quency spectrum includes branches extending into the imaginary and complex wave-

number domains.




1.2.1.7 Cut-off frequency

Cut-off frequencies are the frequencies corresponding to a zero wavenumber. For a
particular mode, the cut-off frequency is the frequency where the wavenumber of the
branch changes from real to imaginary (or complex). |
1.2.2 Transversely isotropic materials

Many natural and artificial materials are transversely isotropic. For example, hex-
agonal crystals, including beryllium, cadmium, magnesium, titanium and zinc, are
transversely isotropic. Ice is also transversely isotropic.

A unidirectional, fiber-reinforced composite material is transversely isotropic. This
type of material is highly anisotropic because the stiffness and strength in the fiber di-
rection are of the order of the values for the fiber, and are thus very high, and the stiff-
ness and strength transverse to the fiber direction are of the order of the values for the
matrix, and are thus much lower. Carbon and graphite, which are often used in fiber-
reinforced materials, are themselves transversely isotropic.
1.2.2.1 Constitutive behavior of transversely i ic material

In its most general form (here, and in the following, we use the Cartesian coordinate

system), Hooke’s law can be written as

Tii = Cija€i 1.4)

where T, j are the components of the stress tensor, €, are the components of the strain

tensor, and c;;; are the components of the elasticity tensor. Note that Einstein’s sum-




mation convention applies to equations 1.4 and to all subsequent equations that are
written in tensor notation, unless noted otherwise.

The components of the stress and strain tensor are symmetric, that is

o (1.5)
&a T &

so that

Ciga = Sjik1 = Cuyj T Sijike (1.6)
As a result, there are at most 36 independent components of the elasticity tensor in the
general Hooke’s law for anisotropic materials. The existence of a strain-energy density

function

1
W = Qcijkleijekl (1.7)

further reduces the maximum number of independent components to 21.

Because of the symmetries in the components c;;, 2 shortened matrix notation has
been introduced to describe the stress-strain relation for an anisotropic material (Payton
1983). In this notation, pairs of subscripts involving the numbers 1, 2, and 3 are re-

placed by 1, 2, 3, 4, 5, and 6 as follows

(11) &1, (22) &2, (33) &3, (23) = (32) &4,

(1.8)
(31) = (13) & 5and, (12) = (21) &6,




so that, for example,

Ci1230 = Cgy- (1.9

Using the shortened notation, we write equations 1.4 as

T, = 6§ (1.10)
where ,j = 1,2,...,6, and
Ty =1 Tyy = T Tar = 1T
11 1 22 2 33 3
(1.11)
T3 = Y T31 = Ts T2 = Te
and
€, =€ €,, = € €1, = €
11 1 22 2 33 3
(1.12)
28, = €, 2e;, = & 2g,, = €.

The components c, i in equations 1.10 are called the elastic moduli of the material.
When the elastic moduli are independent of position, the medium is said to be elastical-
ly homogeneous and the components ¢, ; are the elastic constants of the material.
When the material is elastically symmetric in certain directions, the number of in-
dependent elastic moduli in equations 1.10 is further reduced. For instance, when there

is one plane of elastic symmetry in the material, there are 13 independent elastic moduli




and the material is called monoclinic. When there is elastic symmetry with respect to
three mutually perpendicular planes, the number of independent elastic moduli reduces
to 9 and the material is called orthotropic. If, at every point in the material, there is one
plane in which the elastic moduli are equal in all directions, the material is called trans-
versely isotropic and the number of elastic moduli reduces to 5. The unit vector normal
to the special plane of isotropy in a transversely isotropic material is called the preferred
direction of the material. Comprehensive discussions of material symmetry and elastic
moduli can be found in Jones (1975), Christensen (1979) and Sokolnikoff (1987).
1.2.2.2 Constraints on the ¢lasti li

The elastic moduli ¢;; are positive definite when

C;i%iX; >0, (1,j=1,2,...,6), (1.13)
for arbitrary, non-zero vectors x;. Physically this corresponds to the requirement that
the strain-energy density function must remain positive in order that this energy be min-
imal in a state of equilibrium. The necessary and sufficient conditions on the elements
Cij» in order that the quadratic form (equation 1.13) be positive definite, are that all of

the determinants,

€11 €12 €13
(1.14)

11 | ear €2 €3 oo el




remain positive (Kreyszig 1972). The specific constraints on the elastic moduli of a
transversely isotropic material are discussed in chapter 3.
1.2.2 3 Effective elastic constants of homogeneous composite materials

When we speak of the elastic constants of a homogeneous, composite material, we
really mean the effective elastic constants of the material. Before defining the effective
elastic constants of a homogeneous, composite material, it is first necessary to explain
what is meant by a composite material versus a composite body.

A composite body consists of two or more materials that are macroscopically dis-
tinct and are joined together in order to achieve some useful property. The properties
that may be emphasized include wear resistance, thermal insulation, acoustic insula-
tion, and low weight. Examples of a composite body include bimetals, clad metals, and
laminated glass.

In a composite material, it is possible to define a representative volume element
(Hashin 1983). Representative volume elements are large compared to the dimensions
of the components of the composite material. A necessary characteristic of a composite
material is statistical homogeneity. In a statistically homogeneous composite material
all global characteristics such as volume fractions, two-point correlations, etc., are the
same in any representative volume element, irrespective of its position within the ma-
terial. Examples of a composite material include fibrous composites and particulate
composites.

The effective elastic constants of a composite material define the relations between

averages of field variables such as stress and strain, when the spatial variation of these




field variables is statistically homogeneous. The use of effective elastic constants to de-
fine the relations between field variables, when the composite material is subjected to
arbitrary boundary conditions and, therefore, the internal field variables are no longer
statistically homogeneous, is discussed by Hashin (1983) and is summarized in the fol-
lowing paragraphs.

In the classical continuum mechanics of homogeneous materials, it is always as-
sumed that the continua retain their properties regardless of specimen size. All real ma-
terials, however, have microstructure. Metals, for example, are actually polycrystalline
aggregates and are heterogeneous materials that are statistically homogeneous. There-
fore, the differential element of the theory of elasticity is actually a representative vol-
ume element. The effective elastic moduli of this representative volume element are the
elastic moduli of the theory of elasticity.

The classical approach, then, in the analysis of homogeneous composite materials,
is to assume that the field equations of elasticity are valid, with the effective properties
of the composite material replacing the usual elastic properties of a homogeneous con-
tinuum.
1.2.2.4 Wave pr ion in composite materi

The dynamic response of deformable composite materials can be broadly divided
into two categories (Christensen 1979). If the wavelength of the response of the mate-
rial is long compared to the scale of the representative volume element, the material re-
sponse is governed by the effective properties of the material. In this case, the equations

of motion of the composite material are identical to those of homogeneous materials.




If the wavelength of the response is not ideally long with respect to the representa-
tive volume element, very complicated dynamic effects occur. These effects include
wave reflection and refraction at the interfaces of the components of the composite ma-
terial. These phenomena are most important in the field of ultrasonics. |

In this study, we restrict our analysis to the wavenumber and frequency domains
such that wavelengths are long enough so that we can assume that the material response
is governed by the effective material properties.

1.2.3 Previous investigations into wave propagation in cylinders
1.2.3.1 Shell linders in a vacuum

Various models have been developed to investigate the free wave propagation in
hollow circular cylinders in a vacuum. Many of the earlier models were based on as-
sumptions that restricted their validity to low frequencies of shells whose thickness is
small compared to the inner radius, (Love 1944, Junger and Rosato 1954, Naghdi and
Berry 1954, Lin and Morgan 1956a, Naghdi and Cooper 1956, Mirsky and Herrmann
1957, Cooper and Naghdi 1957, Herrmann and Mirsky 1956). Later, Mirsky and Her-
rmann (1958) investigated wave propagation in a thick-walled shell but restricted their
analysis to the lowest or fundamental mode.

Other approximate models have been developed based on the theory of elasticity.
Bird (1960) and Bird et al. (1960) used a perturbation theory that lead to results involv-
ing algebraic and trigonometric functions. McNiven et al. (1966a) expanded the dis-
placements in a series of orthogonal polynomials. McFadden (1954) and Gazis (1958)

investigated several modes of the plane strain vibrations of finite or infinite cylinders

10




using the theory of elasticity, but excluded displacements in the axial direction. Finally,
investigations of the axisymmetric and nonaxisymmetric modes of wave propagation
in hollow cylinders, based on the three-dimensional equations of elasticity, were con-
ducted by Armenakas et al. (1969), Gazis (1959a, b) and by Kumar and Stepheﬁs
(1972).

Almost all of the above investigations were restricted to the purely real dispersion
curves, i.e. involving relationships only between real wavenumbers and real frequen-
cies. However, the investigations of McNiven et al. (1966b) and Kumar and Stephens
(1972) encompassed purely real, purely imaginary and complex dispersion curves.
1.2.3.2 Fluid-filled shells and cylinders

Wave propagation in fluid-filled tubes has been investigated since the time of
Young (1808), who produced a comprehensive analysis of the influence of wall com-
pliance on blood flow in human arteries. Since that time, the subject of blood flow has
been studied extensively, (see Skalak (1966) for a survey of the literature on blood
flow). Examples of other studies includes that of Fay et al. (1947) and Jacobi (1949)
who used various approximations, such as a restriction to low frequencies or ignoring
the Poisson’s coupling of the shell, in their investigations of axisymmetric wave prop-
agation in tubes. Thomson (1953) introduced the effects of Poisson’s ratio and evaluat-
ed the phase velocities of the first three axisymmetric “fluid” waves. Later, Lin and
Morgan (1956b) studied the axisymmetric wave propagation in a fluid-filled shell with-

out the approximations introduced by previous authors.

Kumar (1971, 1972) investigated the axisymmetric and nonaxisymmetric wave




propagation in a fluid-filled cylinder of arbitrary thickness, within the framework of the
theory of elasticity, and analyzed the cut-off frequencies and the real, imaginary, and
complex dispersion curves as functions of wall thickness. More recently, Fuller and
Fahy (1982) investigated the real, imaginary, and complex dispersion behavior énd en-
ergy distributions of axisymmetric and nonaxisymmetric waves in thin-walled cylindri-
cal elastic shells, filled with a fluid, as functions of frequency and material parameters.
1.2.3.3 Shells and cylinders immersed in a fluid

Many of the early investigators of the vibrations of thin and thick shells surrounded
by a fluid were interested in the application of the results to acoustic waveguides and
underwater sound sources. Junger’s (1952a, b) early analysis of thin shells considered
only axisymmetric, radial motion of the shell. Junger (1953) later considered the three-
dimensional thin shell problem. In this study, Junger did not address the fluid-solid in-
teraction problem but, instead, assumed that the shell had known displacements. Bleich
and Baron (1954) extended the work of Junger (1953) by utilizing the modes of vibra-
tion of the thin shell in a vacuum as generalized coordinates and emphasized the struc-
tural response of the shell rather than the acoustic response of the fluid. Greenspon
(1960) studied the case of the axisymmetric vibration of a thick cylindrical shell in wa-
ter for the purpose of gaining insight into the shell behavior and specialized the results
for applications to underwater sound sources and transducers. Greenspon (1961) ex-
tended this investigation into the more general type of deformation corresponding to
higher order circumferential modes of vibration of thin and thick shells in water. The

text by Junger and Feit (1986) provides a comprehensive study on the vibration of

12




plates and shells in a vacuum and in water and of the sound radiation into the fluid.
1.2.3.4 Shell lin h fluid-filled and immersed in a flui

Due to the complexity of the geometry, there have been few investigations into the
wave propagation in circular cylinders, of arbitrary thickness, with fluid loading on the
inner and the outer surfaces. Chandra and Kumar (1976) investigated the dispersion of
axisymmetric waves in fluid-filled cylinders that had external fluid loading. They found
that the effect of the surrounding fluid on the fluid-filled cylinder increased with a de-
crease in the wall thickness of the cylinder and extended their results into the complex
wavenumber domain. Sinha et al. (1992) also investigated the case of axisymmetric
wave propagation in a fluid-loaded cylinder of fixed wall thickness. In their study, the
boundary conditions increased in complexity from a hollow cylinder in a vacuum to a
fluid-filled cylinder, a hollow cylinder with fluid loading on the outer surface, and a
cylinder with fluid loading on the inner and the outer surfaces. A comparison of the an-
alytical results were made to experimental data by Plona et al. (1992).
1.2.3.5 Ani ic cylin

All of the investigations, discussed so far, have dealt with cylinders composed of
isotropic materials. A limited amount of investigations exists in the area of wave prop-
agation in cylinders composed of anisotropic materials, particularly based on the three-
dimensional theory of elasticity. Chree (1890) may have been the first investigator of
axisymmetric wave propagation in an anisotropic bar. In this analysis, the equations of

motion of a transversely isotropic bar, of any cross section, were developed and then

specialized for the case of a circular rod. Approximate solutions were obtained by ex-




panding the displacements in powers of the radius r. Later, Morse (1954) developed the
exact solution of the problem studied by Chree (1890) and showed that the solution re-
duced to the Pochhammer solution for the isotropic case. No numerical results were
presented by either Chree (1890) or Morse (1954). Mirsky (1965a, b) investigatéd axi-
symmetric and nonaxisymmetric wave propagation in transversely isotropic cylinders
and used displacement potentials to solve the equations of motion. Fraser (1980) used
the method of eigenfunction expansion to separate the equations of motion of an aniso-
tropic cylinder and specialized the results to a transversely isotropic material. However,
he did not analyze the dispersion of the modes of vibration. Axisymmetric wave prop-
agation in orthotropic cylinders was studied by Mirsky (1964) who obtained closed-
form solutions of the equations of motion in terms of infinite series using the method
of Frobenius. Armenakas and Reitz (1973) expanded the displacements of the cylinder
into a power series of the radial coordinate to study wave propagation with an arbitrary
number of circumferential modes in an orthotropic cylinder. However, none of the
above investigations included the effects of fluid loading on either the internal or exter-
nal surfaces of the cylinder.

To the author’s knowledge, wave propagation in fluid-loaded, transversely isotro-
pic cylinders has not been investigated, to date, within the framework of the theory of
elasticity,

1.3 OVERVIEW OF THE DISSERTATION
In chapter 2, the displacement equations of motion of the cylinder are formulated

using the constitutive equations of a transversely isotropic material with a preferred ma-
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terial direction collinear with the longitudinal axis of the cylinder. The displacement
equations of motion of the internal and external fluids are formulated using the consti-
tutive equations of an irrotational, inviscid fluid. Displacement potentials are used to
solve the equations of motion of the cylinder and of the fluids. The frequency eqﬁation
of the coupled system, consisting of the cylinder and the inner and outer fluids, is de-
veloped under the assumption of perfect-slip boundary conditions at the fluid-solid in-
terfaces. This frequency equation is general in axial wavenumber &, circumferential
wavenumber n, wall thickness h, and radian frequency ®.

In chapter 3, the frequency equation is specialized for the case of material isotropy
and for the n=1, nonaxisymmetric modes of wave propagation. Cut-off frequencies are
computed for the first four plane strain modes and the first two axial shear modes, as
functions of two different Poisson’s ratios and the ratio of the cylinder inner to outer
radius. In particular, Poissons’s ratios for steel and for rubber are used in these compu-
tations. The frequency spectrum of wave propagation in a hollow cylinder, a hypothet-
ical fluid column, a fluid-filled cylinder, and a cylinder that is fluid-filled and immersed
in fluid, is computed for each of the two materials.

In chapter 4, the cut-off frequencies and frequency spectrum are computed for the
n=1, nonaxisymmetric modes of wave propagation in a homogeneous, transversely iso-
tropic cylinder that is fluid-filled and immersed in fluid. The particular geometry that
is investigated is a fiber-reinforced cylinder with the fibers aligned parallel to the lon-

gitudinal axis of the cylinder. The effective elastic constants are computed using the in-

dividual elastic constants of the matrix and reinforcing fibers and the volume fractions




of each of the two components. The numerical results are compared to those obtained
for the two isotropic materials.

A summary and conclusions of the results of chapters 2 to 4 are provided in chapter
5 and a discussion of recommendations for continued investigations are provided in
chapter 6.

The Mathematica programming language (Wolfram 1991) was used extensively
throughout this investigation. The symbolic computation capabilities of Mathematica
were first used to assist in the manipulation of algebraic formulas in the analytical for-
mulation of the problem. Next, Mathematica’s numerical capabilities, including com-
putations of complex Bessel functions, were used for the root searches of the complex

frequency equation.
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2. ANALYTICAL FORMULATION

We begin this chapter with the physical description and assumptions of the behavior
of the coupled system consisting of a hollow cylinder filled with and immersed-in an
inviscid fluid. We then develop the displacement equations of motion of the cylinder
using the constitutive equations of a linearly elastic, homogeneous, transversely isotro-
pic material, and the assumed displacement forms. Solutions of the equations of motion
are used to derive the displacement components and surface stresses on the cylinder.
Next, we develop the displacement equations of motion of the internal and external flu-
ids, using the constitutive equations of an irrotational, inviscid fluid, and the assumed
displacement forms. Solutions of the equations of motion of the internal and the exter-
nal fluids provides their respective displacement components and pressures.

The frequency equation of the system is developed by coupling the cylinder to the
fluids through the boundary conditions at the cylinder’s inner and outer surfaces. The
classical approach is used to deal with the inviscid fluid-solid interface. That is, perfect-
slip boundary conditions are assumed allowing for discontinuity in the planar displace-
ment components. Application of these boundary conditions results in a system of
eight, linear, homogeneous, algebraic equations in the unknown wave amplitudes. The
solutions of these equations are discussed in chapters 3 and 4.

2.1 SYSTEM GEOMETRY
The system consists of an infinitely long, hollow, linearly elastic, transversely iso-

tropic cylinder with inner radius a, and outer radius b. The cylinder is filled with an ir-




rotational, inviscid fluid with a density pi and an acoustic phase velocity c, . The
cylinder is also immersed in a second, irrotational, inviscid fluid with a density pg and
an acoustic phase velocity ¢, . The system is assumed to be linear so that the linearized,
three-dimensional, stress equations of motion can be utilized for the cylinder aﬂd the
fluids. The system displacements and stresses are defined by the cylindrical coordi-
nates, r, 6, z. The cylindrical coordinate directions are designated as the 1, 2, and 3 di-
rections, respectively.
2.2 EQUATIONS OF MOTION OF THE CYLINDER
2.2.1 Three-dimensional dynamic equations of elasticity

The three-dimensional stress equations of motion and strain-displacement relation-

ships of a linearly elastic, solid medium are
i = pu;, 2.1
and

(u, .+u.,.), (2.2)

respectively, where 1, ; are the components of the stress tensor, g, are the components
of the strain tensor, u; are the displacement components, and p is the density. It should

be noted that Einstein’s summation convention applies to equations 2.1 and 2.2 and to
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all other equations that are written in tensor notation, and that 1 i j denotes a‘ci j/ ox i

etc.

Equations 2.1 and 2.2 are written in cylindrical coordinates as

1

Trr,r + ;"re,e + Trz,z

Toz,z ¥ ;T00,6 T 10t Tror

TZZ,
and
er = ur,r
28 4 =
2gy,
2¢,
respectively.

2.2.2 Constitutive equations

1

.t ;192,9 + ;Trz T

N

m
==}
=

]

1
+ - (T~ Tgp)

- ;“z,e + Ug 2

= ur,z + uz,r ’

pu,
plg

pﬁz’

The constitutive equations of a general anisotropic material are

= Gk
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where Cjjik1 are the components of the elasticity tensor. As discussed in chapter 1, when
the medium is homogeneous the components of the elasticity tensor are constant and,
when the medium is homogeneous and transversely isotropic only 5 of the elastic con-
stants are independent. |
Homogeneous, transversely isotropic materials have one plane in which the elastic
constants are equal in all directions. The unit vector, normal to the special plane of isot-
ropy in a transversely isotropic material, is called the preferred direction of the material.
When the preferred direction of a transversely isotropic material is given by a unit vec-

tor {m}, the constitutive equations, 2.5, can be written as (Sutcu 1992)

Ty = 8y (Cp + Comymye, ) +mym; (Coey + Cym

+Cs (mimpt-:pj + mjmpepi) ,

pMqfpq) * Caty (2.6)

where the constants Cy, C,, C3, Cy4, and Cs, are related to the more familiar engineering

constants as

C, = 2vp-1)B;+Gy

C, = E + (2v_ - 1) By 4G, + Gy @.7)
C, = 2G;

Cs = 2G, - 2G,.

The definitions of the engineering constants on the right-hand side of equations 2.7 are




B = the transverse bulk modulus,

Gy, = the longitudinal shear modulus,

Gr = the transverse shear modulus,

E; = the longitudinal Young’s modulus,

ET = the transverse Young’s modulus,

v, = the longitudinal Poisson’s ratio,

vt = the transverse Poisson’s ratio,
where “transverse” refers to properties in the plane of isotropy and “longitudinal” refers
to properties along the material preferred direction.

When the preferred direction vector {m} is collinear with the z, or the 3, direction

of the cylinder, i.e. m;=0, m,=0, and m;=1, equations 2.6 become

Tir = 1184 T C12€00 + €138,

T = Cyn€ _ +Cy,Eqn + Cy2E
00 12%1r 1166 13%zz
2.8)

Tzz = 0138” + cl3869 + c33£zz

To

= 2(:4489z Tzr = 2044€zr Tre = 2'(:66£':r9 ’




(2.10)
€3 = &, €3 = &, €12 = &> :

and where

¢, = C, = B;-Gy

2
cy3 = C;+2C,+C3+C,+2C5 = E| +4Bpv[ (2.11)
(C, +Cs)
w=—7 =G

Cy
Ceg = 5 = GT = (c11—°12)/2°

A Mathematica program (Wolfram 1991) was developed to expand equations 2.6
for any unit vector {m} and to provide the resulting elastic constants in terms of the en-
gineering constants. This program is provided in appendix D.

Substitution of the constitutive equations, 2.8, and the strain-displacement relation-
ships, 2.4, into the stress equations of motion, 2.3, results in the following displacement

equations of motion,
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1 Ur | Ce6 1
Cp| Y ¥ ;ur,r ) + —7 Y100 770 T (c66 + 012) Yg 10
T T

1 ..
— (Ces+C11) Ug g+ (Cyy + C13) U, ., = PY;
r

1 1 41 Ug
~(Ces+C12) Uy 10+ 5 (Ces * C11) Urp * Cos| Yo + [0 ™ 2
r . T

(2.12)
¢ 1

+ 2 + +=(Cyy +Cy3) U, o, = PU
5 0,00+ Ca4l.zz T 7 (Cas ¥ C13) Uz, = Pl
T

1 1
(Caq +C13) Uy * 2 (Cag+C13) U, + 1 (Cay+C13) Vg,

1 1 3
+ c44(uz,rr + ;uz,r + "j“z,ee) +C330, ., = pu,.
T

2.2.3 Displacement potentials

To uncouple equations 2.12, we follow Mirsky (1965) who assumed the following

displacement forms,

u (r,0,z,t) = (q> (r,0), + %W (r,0) ,e)cos (ot +kz)

ug (r,6,2,1) = (%‘b (,0) .- V(r,0) ,,)cos (ot +kz) (2.13)

u,(r,0,z,t) =No (r, ) sin (ot + kz),

where ¢(r,0) and y(r,8) are displacement potentials and 7 is an arbitrary constant.
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For mathematical convenience we will use an exponential dependence on z and on

t so that the assumed displacement forms become

-i(@t-kz)

0,0,2,0 = (000, + 1y (0 0)e
Ug (r,0,z,t) = (-i-q) (r, 0) o=V (r, 0) ,r)e—i(mt—kZ) (2.14)

-i(ot-kz)

u,(r,0,z,t) =nd(r,0)e

With this notation, complex phase velocities can be handled in a straightforward man-
ner.
When equations 2.14 are substituted into equations 2.12, and the results are simpli-

fied, the equations of motion of the displacement potentials are found to be

[C“V2¢ (r,0) + {pmz— k2044 +ink(c;3+cyy) 10 (1, 6)] ’r

+%[C66VZ\V (r,0) + (po)2_k2044)\|j (r, ()):l,6 =0

1 (2.15)

;[CHV% (1, 0) + {p@’ —k’cy, +ink (cis +c,) 10 (1, e)] o

—[C66V2\V (r,0) + (me_ ksz)W (r, 9)],r =0

[ik (Cy3 + Cyq) +11C4] V20 (1, B) +(pm2-k2c33)n¢(r, 8) =0,




where

2 1 1
Vi= ()t ),,+r—2( ) 500 (2.16)
is the two-dimensional Laplacian operator, and where the exponential dependence on ¢

and z has been suppressed.

The first two equations of the set 2.15 are satisfied if, in particular,
¢, V20 (1, 8) + [po’ ~k’c,y +ink (c13+¢4y) ]0 (1,0) = 0, @.17)
and if
cecV2Y (1, 6) +(pm2-k2c44)\y(r, 8) = 0. (2.18)

The last equation of the set 2.15 is consistent with equation 2.17 when 1 is the solution

of

2 2 .2 .
n(p(oz—k c33) _po —k'cyy +ink (ci3 +cyy)
ik(cig+Cyy) +MCy i (2.19)

I
e

After solving for 1} from

25




p0)2—k2044+ink(cl3+c44) 2

and substituting the solution into

n( po)2 - k2c33)

b

i

= ¢’

ik(ci3+cy) +Ncy

we find that {? satisfies the equation

4 2 {2 27,2
(11649 § = [ (c1y +cyp) P2 +(°13+2013°44‘°11°33)k]c

The solutions of {Z are

where

s

S

+ (p(n2 - c33k2)( pco2 — c44k2) = 0.

~-B-4BX-4AC
2A

_B+ B _4AC
oA

(2.20)

(2.21)

(2.22)

(2.23)




A = (cqiCy)
2 (2 2
B = —[(c); +c4) P00 +("13 +2°13°44‘°11"33)k] (2.24)

= (p(o2 - c33k2)(pm2 - c44k2).

@]
|

From equations 2.17, the third equation of the set 2.15 and equation 2.18, the equa-
tions of motion of the displacement potentials ¢,(r,0) (corresponding to §12 from equa-

tion 2.20), ¢,(r,0) (corresponding to C_,22 from equation 2.21), and y(r,9), can be shown

to be
V20, (r,0) + Cf‘bl (r,6) =0
V20, (1, 8) +{30,(1,0) = 0 2.25)
V2y (1,0) +q v (1,8) = 0,

where

2 (pmz _ c““kz) . (2.26)
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2.2.4 Solutions of the equations of motion of the cylinder
We first consider the solution of ¢, (r, 8) . In view of the finite cross-sectional di-

mensions of the cylinder, we assume a separation of variables solution in r and 9, i.e.
¢, (1,0) = @,(r)6,(0). (2.27)

Substitution of equation 2.27 into the first equation of set 2.25, results in

©,(6) .49 +n°©, (6) = 0

) (2.28)

(1) oy + 1B, (1) - I;%(Dl (1) + L0, (1) = 0.

’rr

The solutions of the first equation in set 2.28 are sines and cosines of argument n.
Because the solutions should be continuous functions of 8 with continuous derivatives,
n can only be zero or an integer. The second equation of set 2.28 is Bessel’s equation
of order n when {, is real or complex, and is the modified Bessel’s equation of order n

when {, is imaginary. The solution of @, (r) is

@, (r) = AW, (1) +B,Z_(§1), (2.29)




where &, = {, and W, and Z,, are the Bessel functions J, and Yy, respectively, when
¢, isreal or complex,and &; = |{;| and Wy, and Z, are the modified Bessel functions
I, and K, respectively, when {, is imaginary.

Assuming a separation of variables solution for ¢,(r,8) and y(r,8) in r and 0 results

Q,(r) = A2Wn(§2r) +B,Z n(ézr), (2.30)
and
¥(r) = A3Wn(§3r) +B3Zn(§3r). (2.31)

In equation 2.30, &, = {, and W, and Z, are the Bessel functions J, and Yy, respec-
tively, when {, is real or complex, and §, = |C,| and Wy, and Z,, are the modified
Bessel functions I, and K, respectively, when {, is imaginary. In equation 2.31,
&, = q and W, and Z,, are the Bessel functions J, and Y, respectively, when q is real
or complex, and &, = lgl and W,, and Z,, are the Bessel functions I, and K, respec-
tively, when g is imaginary.

The sine or cosine dependence on 0 in ¢,(r,8), ¢,(r,0), and y(r,8) must be chosen
so that they satisfy equation 2.14. It is evident that a cosine dependence on 6 in 0,(1,0)
and in ¢,(t,0) is consistent with a sine dependence on 8 in y(r,68), and vice versa. In this

investigation, we use the following set of solutions of the displacement potentials,
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¢,(1,8) = (A;W_(§;1) +B,Z (&;1))cos(nb), (2.32)

0,(r,8) = (A,W_(§,r) +B,Z_ (§,1)) cos (n8), (2.33)
and

y(r,0) = (A;W,_(&;r) +B;Z (&;r)) sin (n6). (2.34)

2.2.5 Cylinder displacements and surface stresses
When equations 2.32, 2.33 and 2.34 are inserted into equations 2.14, the cylinder

displacements become

u (r,0,z,t) = {A/W_(§1) Lt B,Z (&) B
+ AW, (81 +ByZ, (&) | (2.35)

-i (ot-kz)

+ ’;‘ [A,W_ (E,1) +B,Z_(E,1)] } cos (n6) e
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ug (1,6,2,1) = {—';‘ [A,W_(&1) +B,Z (§,D]

—‘;‘ [A,W_(E,r) +B,Z (E,1)] (2.36)

—i (ot-kz)

—[A; W, (&;1) J+B3Zn(§3r) ’r] } sin (n@) e ,

and

u, (r,0,z,t) = {ﬂl [Alwn (glr) +Blzn (ﬁlr)]

. .37
+ M, [A,W,, (§50) +ByZ, (§,1)] } cos (nb) g (k)
where, from equations 2.20 and 2.21, we have
o $2
_ lkCI (013 + C44)
n = 5 > -
poO — C33k - CMCIJ

(2.38)

i(" cuk’ +pe’ - °11C§)

Ny, = )

(ci3+cy)k




Next, when equations 2.35, 2.36, and 2.37 are inserted into equations 2.4 and 2.8,

and simplified, the surface stresses, T, T, and T, become

T = {2 0661;1(A3Wn (E57) ,+B,Z, (§57) - % [A,W_ (E,1)

Ce6

+B,Z_(E;1) 1) -2 r6[A1Wn(f;1r) L+BZ (&)

2

+ AW, (E;1) +B,Z, (E;0) 1+ 2065:—2 [A;W, (§;1) +B,Z, (§;1) (2.39)

+A,W_(E,1) +B,Z_(E,1) ] + (icl3n1k— cucf) [A,W_(E)

+B,Z_ (&1 ] +(icl3n2k-cucﬁ)[Azwn(gzr) +B,Z_ (&0 1}

cos (n0) g (1K) ,

T, = ¢ { (M, +ik) [A,W_(§;1) J+Blzn(§lr) ’r]

+ (112 +1k) [Azwn (gzr) T + B2Zn (&21') I ] (2.40)

—i (ot -kz)

+1k2 [A3W,, (§57) +B4Z, (§51)] } cos (nB) e :

and
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T = Cg {2rﬂ2 [AW_(§1) +B,Z (§;1) + AW, (Er) +B,Z, (§,0) ]
-22 [A,W, (&) +B,Z, (1) +A,W,(§0)  +ByZ, (&) ]
, ) (2.41)
+q [A3Wn (E51) +B,Z, (55 1 +2 1AW, (1) +ByZ, (&) ]
2

2% [A3Wn (E41) +B,Z, (&) | }sin(n)e
T

-i(ot-kz)

2.3 EQUATIONS OF MOTION OF THE FLUID
2.3.1 Stress equations of motion and acoustic pressure
The three-dimensional stress equations of motion of and excess acoustic pressure

in a linear, irrotational, inviscid fluid are

f f_f
T = P U (2.42)
and

(2.43)

respectively.

2.3.2 Constitutive equations

The constitutive equations of an inviscid fluid are




Tifj = -pd;;. (2.44)
We note that the stress tensor for an inviscid fluid is isotropic. That is, the components
of the stress tensor, in any rectangular Cartesian system, are unaltered by orthogonal
transformations of the coordinates.

Substitution of equations 2.43 and 2.44 into 2.42 provides the displacement equa-
tion of motion

f f

f.f
Bu. . = .

i = P, (2.45)

where BT is the adiabatic bulk modulus of the fluid.
2.3.3 Displacement potentials

In investigations of wave propagation in an inviscid fluid, it is generally assumed
(Kumar 1972, Chandra and Kumar 1976, Sinha et al. 1992) the displacements to be of

the form,
f f
u; (1,0,2,1) =0 (r,0,21) ; (2.46)

where it should be noted that, because the fluid is irrotational, ¢f(r,6,z,t) must be a scalar
function.

Upon substitution of 2.46 into 2.45, it can be shown that ¢f(r,9,z,t) must satisfy the




wave equation, that is
f 1 ..f '
¢ (r’ 9, z, t) ’ii__aq) (r’ es zZ, t) =0 ’ (2'47)
C

where

f
’=2 (2.48)
p

is the acoustic phase velocity in the fluid, and where, in cylindrical coordinates,

ai= Ot 2O, 430 g0+ () (2.49)
T

2.3.4 Solution of the equations of motion of the fluids
The radial displacement of the fluids and of the cylinder must be continuous at the
fluid-solid interfaces. Upon inspection of equations 2.35 and 2.46, it is evident that

¢f(r,9,z,t) must be of the form




0 (r,0,2,1) = @ (r) cos (n@) e ™7 (2.50)

When equation 2.50 is substituted into 2.47, we have

f o’ n2 -i (ot -kz)
D (1) + <I) (r) .+ —k o’ (r) |cos (nB) e =0. (2.51)
i r
Equation 2.51 must be valid for all 0, ¢, and z, so that
¢ 2
|:(I> (r) + (D (1) +( -k ——J@ (r )] (2.52)
¢ r

Equation 2.52 is Bessel’s equation of order n when @/c? - k% isreal or complex, and
is the modified Bessel’s equation of order n when w2 /et -k is imaginary.
2.3.4.1 Inner fluid

The solution of equation 2.52 for a fluid column must remain finite as r — 0. The

Bessel function of the second kind Y_ (€,r) , and the modified Bessel function of the




second kind K | (§,1) ,are unbounded whenr = 0. Therefore, the solution of equation

2.52 for the inner fluid is
. .
®, (r) = D,W,_(§,1), (2.53)
where £, = o and Wy, is the Bessel function J, when a is real or complex, and
&, = la] and Wy, is the modified Bessel function I, when o is imaginary, and where

o2 =9 (2.54)

2.3.4.2 Quter fluid
The solution of equation 2.52 for outgoing waves in an infinite fluid must remain
finite as r — oo . The modified Bessel function I (E_,sr) is unbounded when r — oo,

Therefore, the solution of equation 2.52 for the outer fluid is
f
@, (r) = D,W (&), (2.55)
where & = B and Wy, is the Hankel function of the first kind Hrll , when B is real or

complex, and &4 = |B| and Wy, is the modified Bessel function Ky, when B is imagi-

nary, and where




B> = & _%. (2.56)

2.3.5 Displacements and pressures in the fluids

The relevant displacement and pressure components for the inner and outer fluids
are as follows.
2.3.5.1 Inner fluid

When equations 2.50 and 2.53 are substituted into equation 2.46, the radial compo-

nent of displacement for the inner fluid becomes

—i (wt-kz)

4 (,6,2,1) = D;W, (§,r) cos(n)e , (2.57)

and, when equations 2.44 and 2.57 are substituted into equation 2.42, the pressure in

the inner fluid becomes

—i (et —kz)

p, = Py D,W, (&,r) cos (n6) e (2.58)

2352 r flui

When equations 2.50 and 2.55 are substituted into equation 2.46, the radial compo-

nent of displacement for the outer fluid becomes
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—i (ot -kz)

ul(r,6,2,1) = D,W, (&r) cos (nO)e : (2.59)

and, when equations 2.44 and 2.59 are substituted into equation 2.42, the pressure in
the outer fluid becomes

—-i(ot-kz)

p, = P D,W, (£s1) cos (nB) e (2.60)
2.4 BOUNDARY CONDITIONS

To complete the analytical formulation of the frequency equation of the coupled
system requires consideration of the boundary conditions at the inner and outer surfaces
of the cylinder. In a solid-solid interface problem, the continuity conditions require that
the three displacement components and the three surface stress components must be
equal. The same would be true if the fluid were viscous.

However, the classical approach with an inviscid fluid-solid interface is to employ
perfect-slip boundary conditions that allows discontinuity in planar displacement com-
ponents. That is, the radial component of displacement of the fluid and solid must be
equal at the interfaces, however the circumferential and longitudinal components are
discontinuous. The three surface stresses must also be equal. However, we earlier ob-
served that the stress tensor for an inviscid fluid is isotropic. Therefore, the shear stress-

es in the inner and outer fluids are identically zero.
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These boundary conditions can be written as

[TII’ T20 Tre ur] r=a [_pl: 0,0, uf]r =a’ (2.61)

and

[t Ty T U], = [0, 0,0,ul], _,. (2.62)

Equations 2.61 and 2.62 represent a system of eight linear, algebraic equations in

unknown wave amplitudes that in matrix form are
(L] {c} = {0}, (2.63)

where [L] is a8 x 8 matrix whose components are found from equations 2.35 and 2.39
to 2.41, and from equations 2.57 to 2.60, and where {c} isan 8 x 1 column vector of
the unknown amplitude coefficients A, By, A,, B, A3, B4, Dy, and D,. The compo-
nents of [L] are defined in appendix A.

The solution of equation 2.63 is nontrivial when the determinant of the coefficients

of the wave amplitudes {c} vanishes, i.e. when,

L] = 0. (2.64)
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Equation 2.64 is the frequency equation of the coupled system consisting of a trans-
versely isotropic cylinder filled with and immersed in an inviscid fluid. To the author’s

knowledge, this frequency equation has not been developed before within the frame-

work of the theory of elasticity.




3. COMPUTATIONAL RESULTS FOR ISOTROPIC CYLINDERS

We begin our investigations by specializing the coupled system for the case of an
isotropic cylinder filled with and immersed in an inviscid fluid, and the equatioﬁs of
motion of the n=1, nonaxisymmetric modes of wave propagation. The cut-off frequen-
cies are computed for a ratio of inner to outer radius s ranging from 0 to 0.9, which cor-
responds to cylinders ranging from solid to thin-walled. The frequency spectra are
computed for relatively thick cylinders, with a ratio of inner to outer radius of 0.8, con-
sisting of two different materials, namely a soft (linear) rubber and steel. The relevant
properties of the two solid materials and of the inner and outer fluids are provided in
appendix C.

Numerical results are obtained for a hollow cylinder in a vacuum, a hypothetical
fluid column, a fluid-filled cylinder, and a cylinder that is fluid-filled and immersed in
fluid. These individual cases provide a logical progression to systems of increasing dif-
ficulty.

To assist in the interpretation of the results for the relatively complex case of a cyl-
inder that is fluid-filled and immersed in fluid, in terms of the results for simpler con-
figurations, the names of the modes are consistent from configuration to configuration
whenever the cut-off frequencies of the modes can be approximately traced back to the
corresponding cut-off frequencies for a simpler configuration. The results for the iso-
tropic cylinders will be used as an aid to the interpretation of the results for a cylinder

of a transversely isotropic material.
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The numerical results are presented in and discussed as functions of normalized fre-
quency Q, normalized wavenumber &, normalized phase velocity ¢, and the ratio of

the cylinder’s inner to outer radius s, where these normalized variables are defined as

a = inner radius,
b = outer radius,

a . ) }
s = =, ratio of inner and outer radius,

b
h = b- a, cylinder thickness,
Q= (::-)—h, normalized frequency,
T

8 = kh, normalized wavenumber,
Q c

¢ = = = —, normalized phase velocity,
O ¢
and where
2 Sy
Cp = — 3.1)
T op

is the shear wave velocity in the material.
3.1 ISOTROPIC BEHAVIOR

We specialize the cylinder’s constitutive behavior from transversely isotropic to
isotropic by reducing the number of elastic constants from five to two using the follow-

ing relationships
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C13 = c12 (32)

These elastic constants are written in terms of engineering constants (also known as

technical constants) as follows,

c.. = E(1-v)
1 Tv) (1-2v)
_ Ev
‘2= Trv) 1-2v) 33)
E

‘4= 70+v)

where E is the Young’s modulus and v is the Poisson’s ratio of the isotropic material.

By normalizing ¢1; and ¢y, to c44, these elastic constants simplify to

2(1-
h = zf__'z_:,’;"u

12 (1—2V) 44 .

34)

Substitution of equations 3.2 and 3.4 into equations 2.23, 2.26 and 2.38 results in




(> E—- — -k
1 C44 C%
2 2
c2_9_;)2__ 2 _ (1-2v)po .2 _ (1-2v)o~ .2
2 "¢y 2(1-v) ¢4y 2(l—v)c_2r
2 2
2 o 2 O 2 (3.5)
q —)Bc—'— = —2——1(
44 o
2 2
ikn, » 22 _1* = & K’
044 CT
ikn, —> k.

3.2 AHOLLOW CYLINDER IN A VACUUM
We first consider the case of a hollow cylinder with no external or internal fluid

loading. For this set of boundary conditions, the frequency equation is

L11 L12 L13 L14 L15 L16
L21 L22 L23 L24 L25 L26
|L| = L31 L32 L33 L34 L35 L36 =0, (3.6)
L51 L52 L53 L54 LSS L56
L61 L62 I"'63 L64 L65 L66
L71 L72 L73 L74 L75 L76
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where the simplified variables in equations 3.5 are substituted appropriately into the
components of the determinant.
3.2.1 Cut-off frequencies

We begin by solving for the cut-off frequencies of equation 3.6. When the v;'ave-

number is zero, the variables in equations 3.5 further reduce to

\
2 o (3.7)

ikn, -0

| CT
and L3, Loy, Lys, Log, L3, L, Lgs, and Lgg are zero. Equation 3.6 separates into the
|

product of two sub-determinants
Det,Det, = 0 (3.8)

where




L13 L14 LIS L16
Detl = L33 L34 L35 L36 (3.9)
L53 L54 L55 L56 '
L73 L74 L75 L76
and
L, L
Det, = | 21 % (3.10)
L61 I"62

Equation 3.8 is satisfied if either Det; or Det, is equal to zero. The case Det; =0
corresponds to plane strain vibrations (Gazis 1958) in which the displacement compo-
nent u, is equal to zero. The case Det, = 0 corresponds to axial (or longitudinal) shear
vibration involving only longitudinal displacements u,. When the variables in equa-
tions 3.7 are substituted into equation 3.10, we find that the only material variable in
Det, is the shear wave velocity in the material. Therefore, the normalized cut-off fre-
quencies for the axial shear modes are the same for any isotropic material. Although the
plane strain and axial shear modes are uncoupled in the limiting case of zero wavenum-
ber (corresponding to rigid body motion), these modes are coupled at all other wave-

numbers.
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There is an infinite number of cut-off frequencies that are the solutions of setting
Det; or Det, to zero. For the case of a hollow cylinder in a vacuum, we have solved for
the first four cut-off frequencies for the plane strain modes and the first two cut-off fre-
quencies for the axial shear modes. It should be noted that the cut-off frequency for the
first plane strain mode is zero. A plot of these cut-off frequencies for a Poisson’s ratio
of 0.3 (representative of steel) and for a Poisson’s ratio of 0.45 (representative of rub-
ber), as functions of the ratio of the inner radius and outer radius of the cylinder, is
shown in figure 1. (Note that figures 1-10 are located at the end of chapter 3, starting
on page 65).

The cut-off frequencies are normalized to the shear wave velocity in each material.
Using the material properties for rubber and for steel, provided in appendix C, along

with equation 3.1, the shear wave velocities in the two materials are

= 72 m/sec, for rubber
3218 m/sec, for steel.

o
|
i

The normalized cut-off frequencies for the axial modes are the same for either ma-
terial type, as was discussed above. The normalized cut-off frequencies for the second
and third plane strain modes are similar for both materials, with those for rubber being
somewhat greater than those for steel. The normalized cut-off frequencies for the sec-
ond and third plane strain modes, of the two materials, become asymptotically close as

the thickness of the cylinder wall decreases. The normalized cut-off frequencies for the
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fourth plane strain mode are quite different for the two materials, particularly as the
wall thickness increases. As the wall thickness decreases, the normalized cut-off fre-
quencies of the fourth plane strain modes, for both materials, become essentially con-
stant, but not equal. |

The results, shown in figure 1, for v = 0.3, agree with those of Armenakas et al.
(1969), Gazis (1959), and Kumar and Stephens (1972). Kumar and Stephens (1972)
also investigated the variation of cut-off frequencies as functions of Poisson’s ratio as
Poisson’s ratio was varied from 0 to 0.5, for the case of a ratio of inner radius to outer
radius of 0.5. Their results showed that, in general, the cut-off frequencies increased
with an increasing Poisson’s ratio.

The cut-off frequencies for s=0.8 will be used to identify the modes in the frequency
spectrum for each material.
3.2.2 Frequency spectra

Next we develop the branches of the frequency spectrum for each material by nu-
merically searching for the frequencies, which are solutions of equation 3.6, for real
wavenumbers from O to w. Figures 2 and 3 are plots of the frequency spectrum for the
three lowest modes (first two plane strain modes and first axial mode) in a cylinder
made of a soft rubber and steel, respectively.

In both figures, the first branch, labeled S, corresponds to the first plane strain
mode. This mode is a flexural mode with large radial displacements and a zero cut-off
frequency. The second branch, labeled S, corresponds to an axial shear mode with

large axial displacements and whose cut-off frequency is the lowest solution of setting

49




Det, equal to zero. For both materials the normalized cut-off frequency for S, is

Q=0.223.

The third branch, labeled S5, corresponds to the second plane strain mode. This
mode is a “breathing mode” with large tangential displacements. The cut-off frequency
for S5 is the lowest, non-zero solution of setting Det, equal to zero. The normalized cut-

off frequencies for the two materials are

Q =0.5953, for rubber
Q =0.5274, for steel.

For both materials, S, and S5 have group velocities that are vanishingly small in the
neighborhood of the cut-off frequencies.

The low wavenumber behavior of the S4, S,, and S5 modes corresponds to that con-
tained in a bending shell theory in which the radial component of displacement is as-
sumed constant through the thickness, while the axial and tangential components are
assumed to vary linearly through the thickness (Armenakas, 1969).

By comparing figures 2 and 3, we can examine the differences in the wave propa-
gation characteristics of hollow cylinders of rubber and of steel. For instance, the nor-
malized phase velocity of S, for both rubber and steel, is essentially identical in the low
wavenumber domain. At higher wavenumbers, the normalized phase velocity of the

flexural wave of a steel cylinder is less than that of a rubber cylinder of comparable




thickness. The normalized cut-off frequency and normalized phase velocity, over all
wavenumbers, of S, is identical for both materials and is asymptotic to the shear wave
velocity in each material at high wavenumbers. The normalized cut-off frequency and
normalized phase velocity of S, for the steel cylinder is lower than for the rubbér cyl-
inder, over all wavenumbers shown.

The frequency spectrum for the steel cylinder compares very well with that of pre-
vious investigators (Gazis 1959, Armenakas et al. 1969, and Kumar and Stephens
1972). These numerical results are included here for completeness and as an aid to the
interpretation of the results for more complicated geometries. The frequency spectrum
for the thick rubber cylinder, to the author’s knowledge, has not been presented before.
3.3 AHYPOTHETICAL FLUID COLUMN

Earlier studies by Kumar (1971, 1972), Chandra and Kumar (1976), and Sinha et
al. (1992) have shown that the presence of an inner fluid may introduce modes of wave
propagation that are not present in a hollow cylinder in a vacuum. These additional
modes originate from modes in the fluid column. Therefore, we next consider the cut-
off frequencies and frequency spectrum of a hypothetical, cylindrical fluid column.

This information will be useful to the interpretation of the frequency spectrum of
the case of a fluid-filled cylinder.

3.3.1 Pressure-release boundary conditions
The case of a cylindrical fluid column with a pressure-release boundary condition

requires the pressure at the inner fluid-solid interface to vanish while the radial dis-

placement remains arbitrary. Since the pressure must be zero for all 8, z, and ¢, equation




2.58, at the inner radius and n=1, reduces to
W, (§,a) =0, .(3.11)
or
§42 = X}, Xp, Xy oo (3.12)

where X, X,, X5, ... are the zeroes of W, (§,a) . If W, (§,a) = I, (§,a) then

Xy, X9, X, ... , are all complex (Abramowitz and Stegun 1972) and, from equation 3.12,
(§,a) is complex. The inner radius a is always a real, positive quantity, therefore com-

plex (§,a) implies complex £, . However, as was discussed in chapter 2, if £, is com-

plex then W, (§,a) = J, (§,a) . This is contradictory. So W, (§,a) =1, (§,a) . If
W, (§,a) = J, (§,a) then x,, X,, X, ..., are all real. This means (§,a) isreal and,
since the inner radius a is always a real, positive quantity, §, is real and is equal to o.

Therefore, from equation 3.11, we have
J,(aa) =0, (3.13)

and, from equation 3.12, we have

oa = 3.832,7.016, 10.173, .... (3.14)
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Equation 3.14 is the frequency equation of a hypothetical fluid column with a pressure-
release boundary condition.
3.3.2 Displacement-free boundary conditions

The case of a cylindrical fluid column with radial displacement-free boundafy con-
ditions requires that urf must vanish at the inner radius of the cylinder while the pressure
remains arbitrary. This must be true for all 6, z, and ¢, and equation 2.57, at the inner

radius and n=1, reduces to
(W, () 1 _, =0. (3.15)
Using a similar argument as above, W, (§,a) #1, (§,a) because the zeros of

I, (§,0) . are all complex (Abramowitz and Stegun 1972). If W, (§,a) = J, (§,a)

then the roots of [T, (§,r) r] L, e allreal, §, = o, and equation 3.15 becomes
J, (ea) —aal, (aa) =0, (3.16)

or,

oa = 1.841, 5.331, 8.536, .... (3.17)

Equation 3.17 is the frequency equation of a hypothetical fluid column with a displace-
ment-free boundary condition.

Equations 3.14 and 3.17 represent families of hyperbolas with finite cut-off fre-




quencies. The first two cut-off frequencies, for each of the two boundary conditions and

for s=0.8, normalized to the shear wave velocity in rubber, are

Q =19.98, 36.58, pressure-release boundary conditions
Q=9.61, 27.8, displacement-free boundary condtions.

The first two cut-off frequencies, for each of the two boundary conditions and for s=0.8,

normalized to the shear wave velocity in steel, are

Q =0.9465, 0.8176, pressure-release boundary conditions
Q=0.2146, 0.6213, displacement-free boundary conditions.

3.3.3 Frequency spectra

The first two branches, corresponding to each of the two sets of boundary condi-
tions and normalized to the shear wave velocity in rubber and of steel, are shown in fig-
ures 4 and 5, respectively. The normalization to the shear wave velocity in each of the
materials facilitates the comparison of these results to other results. The curves labeled
1,and 1, represent solutions of equations 3.14, while the curves labeled L; and L, rep-
resent solutions of equations 3.17.

From a comparison of figures 2 and 4, we note that the fluid modes, figure 4, exist
at wavenumbers and frequencies greater than the solid modes of a rubber cylinder, fig-
ure 2. This means that the fluid modes will not couple with the solid modes, at least in
the wavenumber and frequency domains of interest. However, from a comparison of

figures 3 and 5, we note that the fluid modes, figure 5, exist within the same wavenum-




ber and frequency domains as the solid modes of a steel cylinder, figure 3. The impli-
cations of this overlap or intersection of fluid and solid modes will be discussed further‘
in the next section.

Sinha et al. (1992) investigated the dispersion curves for the axisymmetric §vave
propagation in a hypothetical fluid column, with stress-free and with displacement-free
boundary conditions, and normalized their results to the shear wave velocity in steel.
They found that the lowest order dispersion curve for the displacement-free boundary
condition had a zero cut-off frequency. Kumar (1971) derived the frequency equation
of the n=1 modes of nonaxisymmetric wave propagation in a hypothetical fluid column,
for stress-free and for displacement-free boundary conditions. However, he did not de-
velop the dispersion curves.

3.4 A FLUID-FILLED CYLINDER
The next case to be investigated is that of a fluid-filled cylinder. For this set of

boundary conditions, the frequency equation is

Ly Lip Lyg Lyg Lys Lyg Loy
Ly Lgg Ly Ly Lps Lyg Lyg
Ly Lyp Lz Ly Lys Lyg Lyg
LI = | Ly Lyp Lyg Lgg Lys Lyg Ly | = 0- (3.18)
Ls; Lsy Lsy Ly Lss Lsg Ly
L1 Lo Les Lea Les Lgs L7
L7y Ly L3 Ly Lys Lyg Ly




In the limiting case of zero wavenumber, this frequency equation separates into the

product of two sub-determinants
Det,Det, = 0 (3.19)

where
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and where

L, L
Det, = | 21 72 (3.21)
61 62

is the same as equation 3.10.

In the case of a hollow cylinder without any fluid loading, we noted that the only
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material variable in Det, was the shear wave velocity in the solid material. Inspection
of the components of equation 3.21 shows that Detj is also independent of the intemal.
fluid parameters. This means that the normalized cut-off frequencies for the axial shear
modes, found from setting 3.10 or 3.21 equal to zero, are the same for empty aﬂd for
fluid-filled cylinders of any isotropic material.

3.4.1 Cut-off frequencies for the rubber cylinder

The normalized cut-off frequencies for the S;, S,, and S3 modes for the fluid-filled
rubber cylinder are

Q=0, 0223, 0431,
respectively.

As expected, the presence of the internal fluid has not affected the normalized cut-
off frequency of the S, mode. However, the presence of the internal fluid has reduced
the cut-off frequency of the S3 mode by approximately 28%. No additional cut-off fre-
quencies, which can be traced back to fluid modes, exist within the normalized frequen-
cy band of 0 to %. The absence of any additional cut-off frequencies means that the
internal fluid does not introduce additional modes in the coupled system, consisting of
the inner fluid and the cylinder, within the normalized frequency band of interest.
3.4.2 Frequency spectrum for the rubber cylinder

The frequency spectrum for the fluid-filled rubber cylinder is shown in figure 6.
From a comparison of figure 6 to figure 2, we note that the phase velocity of the S;

mode of the fluid-filled cylinder is less than that of the S; mode of the empty cylinder

for all wavenumbers. For instance, at 8 = 0.2, the phase velocity of the S; mode is re-




duced approximately 36% when fluid is added to the inside of the cylinder.

The phase velocity of the S, mode is reduced somewhat for 8/n <0.3. At higher
wavenumbers, the phase velocity of this mode is unaffected by the fluid and is asymp-
totic to the shear wave velocity in rubber. The phase velocity of the S; mode is rc&uced
over all wavenumbers as compared to the phase velocity of the hollow cylinder without
an internal fluid.

3.4.3 Cut-off frequencies for the steel cylinder

The normalized cut-off frequencies for the Sy, S,, Lq, S3, and L, modes for a fluid-

filled steel cylinder are
Q=0,0.223, 0.228, 0.516, 0.644,
respectively.

The normalized cut-off frequencies of each of these modes can be traced back to the
normalized cut-off frequencies of the modes for each of the separate components of the
coupled system. For instance, the cut-off frequency for the S; mode is somewhat re-
duced from the cut-off frequency for the “breathing” mode of the empty cylinder. The
cut-off frequendes for the modes labeled L, and L, can be similarly traced back to the
cut-off frequencies of the hypothetical fluid column with the radial displacement-free
boundary condition. As expected, the cut-off frequency of the S, mode has been unaf-
fected by the presence of the fluid.

The presence of the additional cut-off frequencies for the L;and L, modes means
that the internal fluid has introduced two more modes in the coupled system, consisting

of a the inner fluid and the cylinder, at least within the normalized frequency band of 0
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to 7.
3.4.4 Frequency spectrum for the steel cylinder

The frequency spectrum for the fluid-filled steel cylinder is shown in figure 7.
These results are dramatically different from those shown in figure 6. The ﬂuid—i)ased
modes and the solid-based modes are greatly perturbed in the coupled system as evi-
denced by large changes in the phase velocities from those of the individual compo-
nents of the system and by an alternating “weak coupling” between the S3 and L, modes
and between the S5 and L, modes. Weak coupling of modes is evidenced by regions in
the frequency spectrum where branches come close together (Armenakas et al. 1969).

The phenomenon of coupling between fluid and solid modes was observed for the
cases of axisymmetric motion of a fluid-filled steel cylinder by Sinha ez al. (1992) and
for the case of nonaxisymmetric motion of a fluid-filled steel cylinder by Kumar
(1971).

A comparison of the frequency spectrum of a fluid-filled steel and hard rubber cyl-
inders was made by Fuller and Fahy (1982) on the basis of a thin-shell theory. In their
analysis the ratio of the cylinder wall thickness to the mean radius was 0.05, and the
shear wave velocity in the hard rubber was approximately 785 m/sec. The results shown
in figures 6 and 7 are for a ratio of the cylinder wall thickness to the mean radius of
approximately 0.22, and for a shear wave speed in the soft rubber of approximately 72
m/sec.

To the author’s knowledge, this is the first time that a direct comparison of the wave

propagation characteristics of a thick, fluid-filled steel and soft rubber cylinder has been
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made on the basis of the theory of elasticity.

3.5 A CYLINDER THAT IS FLUID-FILLED AND IMMERSED IN FLUID

The final case to be investigated, in this chapter, is that of a fluid-filled cylinder that

is immersed in an infinite inviscid fluid. For this set of boundary conditions, the fre-

quency equation is

L11 L12 L13 L14 L15 L16 I"17 I"18
L21 L22 L23 LZA L25 L26 L27 L28
L31 L32 L33 L34 L35 L36 L37
L41 L42 L43 L44 L45 L46 L4
L51 L52 L53 L54 LSS L56 L57 58
L61 L62 L63 L64 L65 L66 L67 L68
L71 L72 L73 I"74 L75 L76 L77 L78
L81 L82 L83 L84 L85 L86 L87 L88

Lsg
L,
L

~
oo

= 0. (3.22)

In the limiting case of zero wavenumber, this frequency equation separates into the

product of two sub-determinants

where

DcztlDet2 =0

(3.23)




L3 Lyg Lys Lig Ly Lyg
L33 Ly Las Lag Ly7 Lyg
Ly Liyg Lys Lgg Lyg Lag
Lg3 Lsg Lss Lsg Lsy Lsg
L73 Ly Lgs Lgg Ly Lag
Lgs Lgq Lgs Ligs L7 Lgg

Det1 =

and where

Det, = Ly Ly

61 L62

| (3.24)

(3.25)

is the same as equations 3.10 and 3.21. Inspection of the components of equation 3.25

shows that Det, is also independent of the external fluid parameters. Therefore, the nor-

malized cut-off frequencies for the axial shear modes, found from setting equations

3.10, 3.21, or 3.25 equal to zero, are the same for any isotropic cylinders that are empty,

fluid-filled, or fluid-filled and immersed in fluid.

3.5.1 Cut-off frequencies for the rubber cylinder

The normalized cut-off frequencies for the S;, S,, and S3, modes for a rubber cyl-

inder that is fluid-filled and immersed in fluid are

Q=0,0.223, 0431,




respectively.

The cut-off frequencies for the S; mode is essentially unaffected by the addition of |
the external fluid loading. All the cut-off frequencies are real.
3.5.2 Frequency spectrum for the rubber cylinder

The frequency spectrum for the rubber cylinder that is fluid-filled and immersed in
fluid is shown in figure 8. From a comparison of figures 6 and 8, we note that the low
wavenumber behavior of the S; and S5 modes is virtually unaffected by the addition of
the external fluid loéding. There is some reduction in phase velocity of the S; mode at
the higher wavenumbers. The reduction in phase velocity of the S; mode at the higher
wavenumbers is more pronounced. The S, mode is not affected by the external fluid
loading. It should be noted, that the branches are real. This means that the external fluid
has not introduced any damping into the modes of wave propagation in the coupled sys-
tem.
3.5.3 Cut-off frequencies for the steel cylinder

The normalized cut-off frequencies for the Sy, S;, L4, S3, and L, modes for a steel
cylinder that is ﬂuid-ﬁllcd and immersed in fluid are

Q =0, 0.223, 0.228 - 0.00141, 0.515 - 0.010i, 0.6433-0.0035i,

respectively.

The most notable effect of the external fluid loading on the cut-off frequencies of
the coupled system is that the cut-off frequencies for the L, S5, and L, modes are com-
plex. At zero wavenumber, these modes are rigid body modes. Therefore, the presence

of the external fluid has introduced damping in these modes of vibration.
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3.5.4 Frequency spectrum for the steel cylinder

In figure 9 we show the real part of the frequency spectrum for the steel cylinder
that is fluid-filled and immersed in fluid. From a comparison of figures 9 and 7 we find
that the real part of branches are very similar to the branches for the fluid-ﬁlled- steel
cylinder. That is, except some very small changes in the phase velocity of the S; mode,
the presence of the external fluid has had little effect on the real part of the cut-off fre-
quencies or the phase velocities of any of the modes.

In figure 10 we show the imaginary part of the frequency spectrum. The presence
of the imaginary part of a complex frequency indicates that the external fluid has intro-
duced damping in the coupled system. What is most important to note in figure 10 is
the nontrivial behavior of the imaginary term as a function of wavenumber and of mode
type. At zero wavenumber, the S; and S, modes are undamped and the cut-off frequen-
cies are unaffected by the presence of the internal or external fluids. The S, mode re-
mains lightly damped or undamped over the wavenumber domain of interest. The S3
mode has the highest amount of damping at zero wavenumber while the damping in the
L, mode is somewhat greater than the damping in the L, mode. This means, as rigid
body modes, only the S; (harmonic transverse vibration) and S, modes (harmonic lon-
gitudinal vibration) will exist for all time.

Attenuation of displacements, particle velocities, stresses, etc., due to the damping

in the system, can be examined by rewriting the complex exponential as

e—i (ot-kz) _ e—i (x +iy) teikz — eyte--i (xt—kz) (3.26)
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where x is the real part and y is the imaginary part of the complex frequency. If y is
positive, the cylinder displacements (for instance) increase without bounds with in-
creasing time. This is physically unrealistic. Therefore, the imaginary term must be
negative, which is true for our results. |
Chandra and Kumar (1976) investigated the axisymmetric modes of wave propaga-
tion in a brass cylinder that was fluid-filled and immersed in fluid. They found that the
percent reduction in phase velocity of the various modes increased with a decrease in
the wall thickness of the C)"linder‘ Sinha, et al. (1992) investigated the axisymmetric
modes of wave propagation in a steel cylinder that was fluid-filled and immersed in flu-
id. They found the presence of the external fluid introduced damping in the system
through the presence of complex frequencies as solutions of the frequency equation.
To the author’s knowledge, this dissertation represents the first time the frequency
spectrum of the n=1 modes of nonaxisymmetric wave propagation in isotropic cylin-
ders (of any material), with internal and external fluid loading, has been studied within

the framework of the theory of elasticity.
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Figure 1. Comparison of the normalized cut-off frequencies of the steel cylinder and of

the rubber cylinder, as functions of the ratio of the inner to the outer radius

65




din

Figure 2. Frequency spectrum of the rubber cylinder in a vacuum
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Figure 3. Frequency spectrum of the steel cylinder in a vacuum
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Figure 4. Frequency spectrum of the hypothetical fluid column normalized to the shear

wave velocity in rubber
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Figure 5. Frequency spectrum of the hypothetical fluid column normalized to the shear

wave velocity in steel
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Figure 6. Frequency spectrum of the fluid-filled rubber cylinder
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Figure 7. Frequency spectrum of the fluid-filled steel cylinder
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4. COMPUTATIONAL RESULTS FOR A HOMOGENEOUS,
TRANSVERSELY ISOTROPIC CYLINDER

In this chapter, the n=1 modes of nonaxisymmetric wave propagation in a fluid-
loaded, homogeneous, transversely isotropic cylinder are investigated. The cut-off fre-
quencies are computed for a ratio of cylinder inner to outer radius s ranging from 0to
0.9. The frequency spectrum is computed for a cylinder with a ratio of inner to outer
radius of 0.8 and consisting of a fiber-reinforced matrix material in which the fibers are
aligned parallel to the longitudinal axis of the cylinder.

The matrix material is a soft rubber with the same material properties as in the case
of the rubber isotropic cylinder. The fibers are nylon cords and the fiber volume fraction
is 10%. The material properties of the rubber matrix material and nylon cords are pro-
vided in appendix C.

Numerical results for the same sequence of cases of boundary conditions are ob-
tained in this chapter as were obtained in chapter 3. These cases are a hollow cylinder
in a vacuum, a hypothetical fluid column with pressure-release and with displacement-
free boundary conditions, a fluid-filled cylinder, and a cylinder that is fluid-filled and
immersed in fluid.

The numerical results are presented in and discussed as functions of normalized fre-
quency Q, normalized wavenumber 8, normalized phase velocity /8, and the ratio
of the cylinder’s inner to outer radius s. These normalized variables were defined in

chapter 3, but are redefined here for completeness as




a = inner radius,
b = outer radius,

a . ) )
s = 0 ratio of inner and outer radius,

b — a, cylinder thickness,

h
Q= c::)_h, normalized frequency,
T

8 = kh, normalized wavenumber,

ke

c . .
= normalized phase velocity,
T

where we define the shear wave velocity in the transversely isotropic material as

\
i
2 Cy X
cr = —, 4.1)
a

4.1 EFFECTIVE ELASTIC CONSTANTS
For this investigation, we use the definitions derived by Jones (1975) for the effec-

tive engineering constants of the fiber-reinforced cylinder. These definitions are
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Ep

T 2(1+vyp)
(G,,Gy)
G, =
(V.G +VG,) |
E| = ViEc+ V,E, (4.2)
o (BB
T~ (VE;+V{E)

v, = vaf + vam

p= prf+ pme ’

where E_, G,V ., Pm» and V_ are the Young’s modulus, shear modulus, Poisson’s
ratio, density and volume fraction of the matrix material, and where
EP Gf, Ve Pp and V, are the Young’s modulus, shear modulus, Poisson’s ratio, densi-
ty and volume fraction of the fiber, respectively, and where

By = the transverse bulk modulus,

Gy, = the longitudinal shear modulus,

Gr = the transverse shear modulus,

E; = the longitudinal Young’s modulus,

Er = the transverse Young’s modulus,

vL, = the longitudinal Poisson’s ratio,

vt = the transverse Poisson’s ratio,
In these definitions, “transverse” refers to properties in the plane of isotropy, and “lon-
gitudinal” refers to properties along the material preferred direction.

The transverse bulk modulus is defined by Hashin (1979) as




ET
2B, = . (4.3)

1-v.—2v, —=
T LEL

Substitution of the material properties of the matrix material (soft rubber) and the
reinforcing fibers (nylon cord), along with a 10% fiber volume fraction of fiber, into

equations 4.2 and 4.3, results in

By = 1.54x 10" N/m’
G, = 575%x10° N/m’
Gy = 5.75%10° N/m’
E, =564x10° N/m’
E; = 1.67x10" N/m®
v, = 042

vy = 045 _

p = 1014 kg/m’.

Sutcu (1992) analyzed the constraints on the engineering constants for a transverse-

ly isotropic material and reported them as
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Gy, Gp, E, E;>0,

-l1<v..<1,
T (4.4)

1-v)E
v2<( T)_

L="2 E;

The effective engineering constants of the fiber-reinforced cylinder, computed from the
definitions by Jones (1975), fall within the allowable bounds of equations 4.4.
Substitution of the effective engineering constants into the definitions of the elastic

constants, equations 2.11, results in

¢y = 2.12x10°
¢yy = 9.69 % 10°
c;3 = 13X 10’
Cyy = 5.74x10°

6

Cy = 5.74x 10

cy = 5.74x10°.

When these elastic constants are normalized to ¢44, we have
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€1 =37 Xcyy,
cp=17xcy
C;3=2.3X%X¢yy,
C33= 100X Cyy

It is important to take note at this time of how highly anisotropic the fiber-rein-
forced composite material is compared to naturally occurring hexagonal crystal mate-
rials. For instance, for the fiber-reinforced material, C33 > 27 X ¢, , while, from Payton

(1983), we find that the elastic constants for beryllium are

c;;=1.8x%xcy,
C12=0.16 Xy
€;3=0.09xcy,
Cy3=2.1XCyy

Ce6 = 0.82 x Cag >

and, therefore, Cy3 = 1.17 x Cqq- Similarly, the elastic constants for ice are
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€ =43xcy
C1p=2.1%Xcy
c3=1.6xcy
Cy3=4.6XCyy

| c66§1.1xc44,

| -
e and, therefore, 45 = 1.07 X ¢, .
It is also interesting to compare the normalized elastic constants for the two isotro-
pic materials used in chapter 3 to those for the fiber-reinforced material. Using equation

3.4 and v = 0.45 for the soft rubber cylinder we have

Similarly, using equation 3.3 and v = 0.3 for the steel cylinder, we have

Cp = Cy3 = 15Xcy,
The relationships of c;; and ¢, to C44 in the fiber-reinforced material are very similar

to those in steel. However, the relationships of ¢3 and c33 to c44 in the fiber-reinforced

material are different from those in either steel or rubber. In particular, the relationship




of ¢33 to 4y is approximately an order of magnitude greater than in rubber. Therefore,

we expect the numerical results for the transversely isotropic cylinder to be different

from the results for either the rubber or the steel cylinder.

4.2 AHOLLOW CYLINDER IN A VACUUM

The frequency equation for this set of boundary equations was defined by equation

3.6. It is repeated here for completeness as

4.2.1 Cut-off frequencies

L11 L12 L13 L14 L15 L16
I"21 L22 L23 L24 L25 L26
L31 L32 L33 L34 L35 L36
L51 L52 L53 L54 L55 L56
L61 L62 L63 L64 L65 L66
L71 L72 L73 L74 L75 L76

= 0. 4.5)

We first examine the solutions of equation 4.5 in the limiting case of zero wave-

number. When the wavenumber is zero, equations 2.23, 2.26 and 2.38, simplify to
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2 c 2
2 pw 4 |0
Shadrail P
11 11/cy

2 o o
Cz_)%— ==
44 Cr
2 2
IV (‘_’4_4)03_ “6
Ce6 Ce6)c
ikn, =0
2 2
ikn _)(011_044)[)0) _(011‘044)0)
2 = )
Ci3+Cyy ) Cay Ci3+Cy C’Zr

and Lo, Ly, Lys, Lyg, L1, Lo, Lgs, and Lg are zero. Just as in the case of the isotropic

cylinders, equation 4.6 separates into the product of two sub-determinants

Det,Det, = 0 4.7

where

Ly Lya Lys Lye
L,,L,, L, L
Det, = 31 32 735 36 4.8)
Ls; L Lss Lse

L71 L72 L75 L76
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and

L,L |
Det, = | 2 7%, (4.9)

L63 L64

Equation 4.7 is satisfied when either Det; or Det, is equal to zero. As in the cases
for isotropic cylinders, solutions of Det; = 0 correspond to plane strain vibration, and
solutions of Det, = 0 correspond to axial shear vibration. When the variables in equa-
tions 4.6 are substituted into equation 4.9 using normalized elastic constants, we find
that Det; is again only dependent on the shear wave velocity in the material.

When the relationships for isotropic materials, equations 3.2, are substituted into
equations 4.6, and the results are substituted into equation 4.9, we find that equation 4.9
is equivalent to equation 3.10. Therefore, the normalized cut-off frequencies, corre-
sponding to axial shear modes, for a transversely isotropic material are equal to the nor-
malized cut-off frequencies for an isotropic material. This means that the normalized
cut-off frequencies of the axial shear modes of vibration in the cylinder are dependent
only on the shear wave velocity in the material, and are independent of any fluid-load-
ing boundary conditions, at least when the cylinder is isotropic or transversely isotro-
pic.

The normalized cut-off frequencies for the second, third, and fourth plane strain




modes of the fiber-reinforced cylinder were computed and are compared to the normal-
ized cut-off frequencies of the soft rubber and steel cylinders in figure 11. (Note that |
figures 11-15 are located at the end of chapter 4, starting on page 94). The cut-off fre-
quencies are normalized to the shear wave velocity in each material. Using the m#terial
properties for rubber, for steel, and for the fiber-reinforced material, along with equa-

tion 3.1, the shear wave velocities in the three materials are

Cp = 72 m/sec, for rubber
cp = 3218 m/sec, for steel

= 75 m/sec, for fiber-reinforced composite.

In general, the normalized cut-off frequencies of the fiber-reinforced cylinder are
very similar to the normalized cut-off frequencies of the steel cylinder. For the second
and third plane strain modes, the normalized cut-off frequencies are essentially equal
for cylinders with a ratio of inner to outer radius s greater than or equal to approximately
0.7. This means that, at zero wavenumber and for s 2 0.7, the hollow fiber-reinforced
cylinder has essentially the same resonant frequencies for these plane strain, rigid body
modes (i.e. no longitudinal motion) as the steel cylinder.

4.2.2 Frequency spectrum

The frequency spectrum for the first two plane strain modes and the first axial shear

mode of the fiber-reinforced cylinder with a ratio of the inner radius to the outer radius

of 0.8, and for real wavenumbers from 0 to 7, is shown in figure 12. (Note that the ap-
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parent piecewise smooth behavior of the branches in figure 12 and subsequent figures
is due to conducting the root searches of the frequency equation at discrete wavenum-
bers). Again we have labeled the branch corresponding to the first plane strain mode S,
the branch corresponding to the first axial shear mode S,, and the branch correspc;nding

to the second plane strain mode S5. The normalized cut-off frequency for the S, mode is

Q=0.223

and the normalized cut-off frequency for the S3 mode is

Q=0.5331.

The normalized cut-off frequency for the S; mode is about 1% greater than the normal-
ized cut-off frequency for this mode in the steel cylinder.

At low wavenumbers, the normalized phase velocity of the S; mode is approxi-
mately one-half the shear wave velocity in the composite material. As wavenumber is
increased, the phase velocity of this mode asymptotically approaches the shear wave
velocity from below.

The group velocity of the S5 mode is essentially zero below 6/ = 0.01. Above
this wavenumber, the phase velocity of this mode is approximately equal to the longi-
tudinal wave velocity in the composite, where the longitudinal wave velocity is defined

as




C
= |23, (4.10)

The characteristics of the S, mode are quite different from those of the isotropic ma-
terials studied in chapter 3. At low wavenumbers, this mode exhibits weak coupling to
the S; mode and the normalized phase velocity is somewhat greater than the longitudi-
nal wave velocity. As wavenumber is increased, the group velocity approaches zero. At
wavenumbers above /% = 0.1, the phase velocity of this mode asymptotically ap-
proaches the shear wave velocity from above.

Mirsky (1965) studied the axisymmetric and nonaxisymmetric modes of wave
propagation in transversely isotropic cylinders and compared the results to a thick shell
theory. In his analysis, the dynamic behavior of beryllium and magnesium was com-
pared to that of steel. The results showed that, for thin cylinders, (s = 0.9672), the fre-
quency spectra for the steel, beryllium and magnesium cylinders were very similar.
However, for thick cylinders, (s = 0.3333), the frequency spectrum for the beryllium
cylinder was sochhat different from that of the steel or magnesium cylinder. It should
be noted that in the low frequency region of the frequency spectrum for the beryllium
cylinder, where the frequency equation contained Bessel functions with complex argu-
ments, Mirsky (1965) substituted numerical results from a thick shell theory for numer-

ical results from the elasticity theory.




To the author’s knowledge, a comparison of the dynamic behavior of a thick rubber
cylinder, a thick steel cylinder, and a highly anisotropic, thick fiber-reinforced cylinder
has not been made before within the framework of the theory of elasticity.

4.3 A HYPOTHETICAL FLUID COLUMN

Next, we consider the cut-off frequencies and dispersion curves of a hypothetical,
cylindrical fluid column with pressure-release (stress-free) and with radial displace-
ment-free boundary conditions.

4.3.1 Pressure-release boundary conditions

The frequency equation of a hypothetical fluid column, within the transversely iso-

tropic cylinder, with a pressure-release boundary condition is identical to equation 3.13,

that is

J, (0a) =0, (4.11)

or,

oa = 3.832,7.016, 10.172, .... (4.12)

4.3.2 Displacement-free boundary conditions

The frequency equation of a hypothetical fluid column, within the transversely iso-
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tropic cylinder, with a displacement-free boundary condition is identical to equation

3.16, that is

J, (aa) -oaal, (aa) =0, .(4.13)

or,

oa = 1.841,5.331, 8.536, .... (4.14)

Equations 4.12 and 4.14 represent families of hyperbolas with finite cut-off fre-
quencies. The first two cut-off frequencies, for each of the two boundary conditions and

s = 0.8, normalized to the shear wave velocity in the composite material, are

Q = 19.08, 34.94, pressure-release boundary conditions
Q=9.17, 26.55, displacement-free boundary conditions.

These normalized cut-off frequencies are very similar to those for a hypothetical fluid
column in the rubber cylinder.

4.3.3 Frequency spectrum

The first two branches, corresponding to each of the two sets of boundary condi-
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tions and normalized to the shear wave velocity in the composite material, are shown
in figure 13. The curves labeled 1; and 1, represent solutions of equations 4.12, while |
the curves labeled L; and L, represent solutions of equations 4.14, respectively.

From a comparison of figures 12 and 13, we note that the fluid modes exist af wave-
numbers and frequencies greater than the solid modes of the cylinder. This means that
the fluid modes will not couple with the solid modes, at least in the wavenumber and
frequency domains of interest. This is similar to the relationship of the fluid modes and
solid modes of the rubber cylinder.

4.4 A FLUID-FILLED CYLINDER

The next case to be investigated is that of a fluid-filled cylinder. The frequency
equation for this set of boundary conditions was given in equation 3.18. Again, in the
limit of zero wavenumber, this frequency equation separates into two sub-determinants.
The solution of setting one sub-determinant to zero corresponds to the axial shear
modes, which as stated before, are found to be dependent only on the shear wave ve-
locity in the material, and independent of any fluid-loading boundary conditions.
4.4.1 Cut-off frequencies

The normalized cut-off frequencies for the S;, S,, and S; modes for the fluid-filled

fiber-reinforced cylinder are

Q=0,0.223, and 0.398,
respectively.

The presence of the internal fluid has reduced the cut-off frequency of the S; mode




by approximately 25%. No additional cut-off frequencies, corresponding to the addi-
tion of fluid modes, exist within the normalized frequency band of 0 to 7. The degree
of reduction of the cut-off frequency of the S3 mode, and the absence of the addition of
any fluid modes, are similar to the characteristics of the fluid-filled rubber cyliﬂder.
4.4.2 Frequency spectrum

The frequency spectrum for the fluid-filled fiber-reinforced cylinder is shown in
figure 14. From a comparison of figure 14 to figure 12, we note that the phase velocity
of the S; mode of the fluid-filled cylinder is less than the phase velocity of this mode
of the empty cylinder, for all wavenumbers. For example, at 8 = 0.27 the phase ve-
locity of the S; mode is reduced approximately 35% when fluid is added to the inside
of the cylinder.

The phase velocity of the S; mode at wavenumbers greater than 6/m = 0.01 isvir-
tually unaffected by the presence of the fluid. The S, mode still exhibits weak coupling
to the S; mode at low wavenumbers. The phase velocity of the S, mode in the fluid-
filled cylinder is less than the phase velocity of this mode in the empty cylinder at wave-
numbers between 0.02 < 8/7 < 0.5 . At wavenumbers greater than /% = 0.5 the
phase velocity of the S, mode is virtually unchanged and asymptotically approaches the
shear wave velocity in the composite material from above.

4.5 A CYLINDER THAT IS FLUID-FILLED AND IMMERSED IN FLUID

The final case to be investigated is that of a cylinder that is fluid-filled and im-

mersed in an infinite inviscid fluid. The frequency equation for this set of boundary

conditions is equation 3.22. Again, in the limit of zero wavenumber, this frequency




equation separates into two sub-determinants corresponding to the axial shear modes
and plane strain modes. The solution of the cut-off frequencies corresponding to the ax-
ial shear modes remain constant, when normalized to the shear wave velocity in the ma-
terial, and independent of fluid-loading boundary conditions. The lowest, non-zero cut-
off frequency, corresponding to a plane strain mode, is the cut-off frequency for the S5
mode.
4.5.1 Cut-off frequencies

The normalized cut-off frequencies for the Sy, S,, and S3 modes for a fiber-rein-

forced cylinder that is fluid-filled and immersed in fluid are

Q =0, 0.223, and 0.394.

The cut-off frequency of the S3 mode is essentially unaffected by the addition of the
external fluid loading.
4.5.2 Frequency spectrum

The dispersion curves for the fiber-reinforced cylinder that is fluid-filled and im-
mersed in fluid are shown in figure 15. From a comparison of figures 14 and 15, we
note that the S, mode is essentially unaffected by the addition of the external fluid load-
ing. The phase velocity of the S; mode is reduced over all wavenumbers. For example,
at 8/ = 0.2 the phase velocity has been reduced by approximately 18%.

At wavenumbers less than 8/n = 0.05, the dispersion characteristics of the S5

mode are unaffected by the addition of the external fluid. However, at higher wavenum-
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bers the phase velocity is reduced significantly. For example, at 8/ = 0.1 the phase
velocity is reduced by 46% with the addition of the external fluid. These results are very
different from the results for the rubber cylinder and steel cylinder.

The effect of the external fluid on the dynamic behavior of the fluid-filled, ﬁber—
reinforced cylinder is very different than on the dynamic behavior of the fluid-filled
rubber and steel cylinder. For instance, all of the cut-off frequencies and branches of
the frequency spectrum for the fiber-reinforced cylinder are real. That is, unlike the re-
sults for the fluid-filled steel cylinder, the addition of the external fluid has not intro-
duced any damping in the coupled system. Also, unlike the results for the fluid-filled
rubber cylinder, the addition of an external fluid resulted in significant reductions in the
phase velocities for the S; and S3 modes.

As a final comment, and to the author’s knowledge, the results shown in figures 14
and 15 represent the first time the cut-off frequencies and frequency spectra of the n=1,
nonaxisymmetric modes of wave propagation in a fluid-filled cylinder and for a fluid-
filled cylinder immersed in fluid, have been computed for a homogeneous, transversely

isotropic cylinder.
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Figure 12. Frequency spectrum of the transversely cylinder in a vacuum
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Figure 14. Frequency spectrum of the fluid-filled transversely isotropic cylinder
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5. SUMMARY AND CONCLUSIONS

The frequency equation of wave propagation in a transversely isotropic cylinder,
that is fluid-filled and immersed in fluid, was developed from the three—dimensional
equations of elasticity and the assumptions of perfect-slip boundary conditions at the
fluid-solid interfaces. This equation is general in axial wavenumber &, circumferential
wavenumber n, wall thickness A, and radian frequency o.

The frequency equation was verified by specializing the variables for the cases of
isotropic cylinders and n = 1 nonaxisymmetric modes and comparing the normalized
cut-off frequencies and frequency spectra to previous results for hollow cylinders in a
vacuum and for fluid-filled cylinders.

The frequency spectrum for the n = 1 modes in fluid-filled, isotropic cylinders im-
mersed in fluid were computed and compared to previous results for similar geometries
and for the n = 0 modes. It was found that the effects of the presence of the inner and
outer fluids on the steel cylinder, for the n = 1 modes, were similar to the effects for the
n = 0 modes. That is, the inner fluid introduced additional modes in the fluid-filled cyl-
inder that were not present in the cylinder in a vacaum. The outer fluid introduced
damping into the system as evidenced by the presence of the imaginary term in the com-
plex frequency.

The effects of the inner and outer fluids on the soft rubber cylinder, for the n =1
modes, were quite different from the effects on the steel cylinder. For instance, the inner

fluid reduced the normalized cut-off frequencies and phase velocities of the plane strain




modes in the soft rubber cylinder significantly more than in the steel cylinder. However,
the inner fluid did not introduce any additional modes within the wavenumber and fre-
quency domains of interest. The external fluid did not have any significant additional
effect on normalized cut-off frequencies or phase velocities, and, unlike the case for the
steel cylinder, did not introduce any damping into the system.

To the author’s knowledge, the cut-off frequencies and frequency spectra for the
n = 1 modes in isotropic cylinders, with fluid loading on the inner and on outer sur-
faces, have not been computed before within the framework of the theory of elasticity

Next, the frequency equation was specialized for the cases of a fiber-reinforced,
transversely isotropic cylinder. When the relationships among the elastic constants of
the fiber-reinforced cylinder were compared to those of some naturally occurring hex-
agonal crystals, the fiber-reinforced cylinder was found to be highly anisotropic.

New results for nonaxisymmetric (n = 1) wave propagation in a transversely isotro-
pic cylinder were obtained for the cases of a fluid-filled cylinder and a cylinder that is
fluid-filled and immersed in fluid. The normalized cut-off frequencies and frequency
spectra for these geometries were computed and compared to those for the soft rubber
cylinder and the steel cylinder. It was found that the effects of the inner fluid on the
wave propagation characteristics of the fiber-reinforced cylinder were similar to the ef-
fects on the fluid-filled rubber cylinder, as evidenced by the reductions in the normal-
ized cut-off frequencies and in the phase velocities of the plane strain modes. However,
the effects of the outer fluid on the two types of cylinders were different. Contrary to

the case of the soft rubber cylinder, the presence of the outer fluid on the fluid-filled,
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fiber-reinforced cylinder further reduced the phase velocities of the plane strain modes
by a significant amount.

It was noted that normalized cut-off frequencies corresponding to axial shear modes
are dependent only on the shear wave velocity in the material and are independént of
any internal or external fluid loading condition. This means, at zero wavenumber (cor-
responding to rigid body motion), the normalized resonant frequency for harmonic lon-
gitudinal vibration is the same for isotropic and transversely isotropic cylinders,
regardless of whether they are fluid filled or immersed in fluid or both.

In conclusion, the characteristics of wave propagation in highly anisotropic cylin-
ders, with or without fluid loading, may be markedly different from the characteristics
of wave propagation in isotropic cylinders. Predictions of the normalized cut-off fre-
quencies and, in particular, phase velocities of various modesin a transversely isotropic

cylinder, based on results for isotropic cylinders, can be seriously inaccurate.




6. RECOMMENDATIONS FOR CONTINUED INVESTIGATIONS
1. The flexural mode is often the mode of greatest interest in nonaxisymmetric wave
propagation. A simplified, low wavenumber model for this mode should be devéloped
using small argument approximations for the Bessel functions in the frequency equa-
tion. This would provide a method to quickly analyze the effects of changes in material

properties of the transversely isotropic material on the phase velocity of this mode.

2. The numerical computations performed in this dissertation were for a relatively
thick cylinder. A similar study of the nonaxisymmetric wave propagation characteris-
tics in fluid loaded, thin, transversely cylinders should also be conducted and compared

to thin shell theory.

3. Displacement and stress distributions in the fluids and the cylinder wall should be
computed over a range of wavenumbers and frequencies in order to analyze the degree
of coupling of the radial, circumferential and longitudinal motions in the cylinder and

the pressure distributions in the inner and outer fluids.

4. The matrix material of the fiber-reinforced cylinder was assumed to be linearly
elastic. Fiber-reinforced materials are often composed of a linearly viscoelastic matrix
material. The frequency equation for the fluid-loaded cylinder should be expanded to

include the effects of linear viscoelasticity.
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APPENDIX A. BOUNDARY EQUATIONS

The boundary equations, which were formulated in chapter 2, are
[L] {c} = 0. (A1)

Equations A.1 constitute a system of eight, linear, homogeneous algebraic equations in
the wave amplitudes {c} , where

{c} = (A, B, A, B, A;B,;,D,;,D,), (A.2)

and where the components of [L] are given below. The ¥,'s are +1 or -1, depending
upon the type of Bessel function that W, represents. This bookkeeping variable is need-
ed due to the differing recursion formulas for the derivatives of the Bessel functions.
For instance, ¥, = -1, when W, represents J , K, ,or H, and vy, = 1 when W, rep-
resents I,

L, = [2c66n (n-1) + (chz— pm2 - icMnlk)az] W_(§;a)

(A.3)
~Y12€66512Wp 1 (5,2)
2 2 . 2
L, = [2066n(n—1) +(c44k —pw —icym;k )a ]Zn(éla) (A4)
+2c48,aZ (&)
2 2 . 2
Lz = [2"66“(“— 1 +(c44k —pw _1044n2k)a ]W“(E"Za) (A.5)
~Y,2¢6682a W, , 1 (§52)
2 2 . 2
Ly, = [2c66n (n—-1) + (0441( -po _1c44n2k)a ]Zn(§2a) (A.6)

+20668,2Z, 41 (§52)
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Lis = 2cen[(n-1) W, (§;2) +7583aW, , ; (§32)]
16 = 2¢en[(n-1)Z_ (§3a) - E.~3azn+1 (533)]
Lip = Pl‘”zaan (E42)

8 =0

.
i

a = (M +ik)a[nW (& a) +7,§aW, (& )]
Ly = (N, +ik)a[nZ (§a) -§aZ, ,(§a)]
Ly = (ny+ik)a[nW _(§ya) +7,8,aW, ., (§a) ]
= (y+ik)a[nZ (§,a) -§,aZ ., (§,2) ]

inkaW_(§;a)

R
[

=
=
[

L, = inkaZ_(&;a)

Ly =0
Ly =0
Ly = -2n[(n- I)Wn (éla) ""Y]g]awr”l (gla)]

Ly =-2n[(n-1)Z (gla) - élazn.,.l (éla)]
Ly = -2n[ (n-1)W_(§,a) +7,6,aW, ., (§,2)]
Ly =-2n[(n-1Z (§a) -&,aZ ,,(§,a)]

Ly = Lq2a2—2n (n—-1) )Wn (§52) +27;8;aW, ; (§32)

Ly = (a2~ 2n(0-1) Jz, (&g - 28502, (50)
Ly =0
Ly =0

Ly =W, () +7,§aW, , (§;a)

Ly, =nZ (§2) -§,aZ ., (§a)
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(A7)
(A.8)
(A9)

~(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

(A22)

(A23)

(A.24)

(A.25)

(A.26)

(A27)

(A.28)




L, = nW,_ (§,2) +7,6,aW_ ,, (§2)
L, = nZ (§,a) -§,aZ ,,(§,2)

L, = nW, (&;2)

L, = nZ_(§;2)

Ly = - (oW, (§,2) +7,8,aW,, (§,2))

Ly = [2cen (1= 1) +( gk - pa® —icym k p7IW, ;)
~¥12C66515Wy 41 (§1P)

. 2
L, = [2c4n(n-1) +(c44k2—pm2—1c44n1k)b 1z, (¢,b)
+2cg6&1bZ; 1 (§;b)

Ly = [2egen(n—1) +{ cpk’ -~ pa’ - icgMok Jo°]W, (5,b)
~Y,2C665,0 W, 1.1 (§;D)

Ly, = [2c¢n (1= 1) +( cyk — po” icymk Jp7]Z, (5,0)
+2¢6585bZ, 1 (§,D)

Ly = 2066n [((n-1)W_ (§3b) + ‘Y3§3bwn+1 (§3b)]
L56 = 2666“ [(n-1) Zn (§3b) - E_,3bZn+1 (§3b) ]
Ls; =0

2,2
Lsg = po@ b G, (&)

-
i

61 (Tll +ik)b[an (glb) +Y]§1bwn+1(§1b)]
(n, +ik)b[nZ (glb) - glbzn.,.l (glb)]

(M, +ik) b[aW | (E;b) +7,8,0W, ,; (§;D) ]

&
0
i

=
)
il
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(A29)
(A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)
(A.40)
(A.41)
(A42)
(A43)
(A.44)

(A45)




Ly, = (M +iK)bnZ  (&;5) ~E;bZ, ,; (&,b) ]

Ly = inkbW, (,b)

Ly = inkbZ_ (£,b)

L, =0

Ly =0

Ly, = -20[ (n=1) W, (§,b) +7,£,bW, ,; (§,b)]
L, = —2n[ (n- DZ_ (Eb) ~&bZ,_, | (&,b)]

Ly, = 20 (n— D)W, (§,) +1,5,bW, , , (5,0)]
Loy = -2n[(n-1)Z (§;b) -E,0Z ,, (§;b)]

Lys = (a’6°-2n(n-1) JW, (;b) +23,E,bW, , | (§;)
L, = (=20 (n-1) )z, (&;b) - 28,02, , | (&;b)

0

Ly
Le=20

Lg, = an(ﬁlb) +‘yl§1an+1 (élb)
Lg, = nZ (§,b) -&,bZ_ ., (§,;b)
Lgy = nW, (§;b) +7,5,bW_ . ; (§;b)
Lgy = nZ (§,b) —E,bZ_ , (§,b)
Lgs = nW,_ (£;b)

Ly, = nW_(&;b)

Ly = 0

Lgg = —(nW_ (&5b) +75E5bW, ; (&5b))
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(A.46)

(A.47)

(A.48)

(A.49)
(A.50)
(A.51)
(A.52)
(A.53)
(A.54)
(A.55)
(A.56)
(A.57)
(A.58)
(A.59)
(A.60)
(A.61)
(A.62)
(A.63)
(A.64)
(A.65)

(A.66)




The solutions of A.1 are nontrivial when the determinant of the coefficients of the
wave amplitudes {c} vanishes, i.e., when

IL| = 0. (A.67)

Equation A.67 is a complex algebraic equation. The real and imaginary parts must van-
ish simultaneously. To aid in the computation of the solutions of equation A.67, all the
physical variables are normalized as follows,

S
a= h(l—s)
b=nh 1 where
(1-s) " (A.68)
h = (b—a),and
g =2
o

and

Q= (;)_h , normalized frequency,
T

& = kh, normalized wavenumber, (A.69)

c=

, normalized phase speed.

-dle]

The branches of the frequency spectrum are calculated by selecting a real value of
the normalized wavenumber and searching for the real or complex value of the normal-
ized frequency. A Mathematica (Wolfram, 1991) program was developed to conduct
the root searches using Mueller’s method (Press e al, 1986). Mueller’s method is an
algorithm that finds a real or complex zero of a complex function, which in this case is
equation A.67. An example Mathematica program is provided in appendix B.




APPENDIX B. MATHEMATICA PROGRAM TO CONDUCT ROOT

SEARCHES OF THE FREQUENCY EQUATION

This is a Mathematica script file to conduct root searches using Mueller’s method. The
comments and instructions are in Italic. The Mathematica commands can be typed or
cut and pasted into a Mathematica session.

The following define the ratio of inner to outer radius, the circumferential wavenumber,
the elastic constants and density of the cylinder, and the densities and acoustic phase
velocities of the inner and outer fluids.

s=.8;n=1;

cll =3.7 c44;
cl2 =1.7 c44;
c13=2.3c44;
c33 =100 c44;
c66 =c44,
rho = 1014;
rhol = 1000;
rho2 = 1000;
cl =1500;

c2 = 1500;

The following Mathematica instructions simplify the arguments of the Bessel functions
and their coefficients.

kappal = 1/2((c11+c44)/c11 omega™2 + (c1372 + 2 c13 c44 - c11 c33)/(c11 c44) *
deltan2);

kappal = Cancel[kappal];

kappal = Simplify[kappal];

kappa2 = (c44/c11 omega’2 - ¢c33/c11 delta”2)(omega’2 - deltar2);

kappa3 = Simplify[kappal - Sqrt[kappalA2 - kappa2]];

kappa3 = PowerExpand[kappa3];

kappa3 = Simplify[kappa3];

kappad = Simplify[kappal + Sqrt[kappal?2 - kappa2]];

kappa4 = PowerExpand[kappa4];

kappa4 = Simplify[kappa4];

kappa$ = c44/c66 (omega’2 - delta”2);
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kappa6 = -(c13+c44) delta®2 kappa3/(c44 omega*2 - c33 delta™2 - c44 kappa3);
kappa7 = (c44 delta”2 - c44 omega™2 + c11 kappad)/(c13 + c44);

denom = c44 omega”2-c33 delta’2 -c44 kappa3;

denom = Collect[denom,c44];

denom = Simplify[denom];

numl = (c33+c44) delta®2 omega”2 - ¢33 delta4 - c44 omega™ +
(c44 omega’2 + c13 delta”2) kappa3;

num] = Collect[num1,c44];

num]l = Simplify[num1];

num1= Cancel{num1/denom];

num?2 = (c13(delta™2 - omega’2) -c11 kappa4)/(c13 + c44);

num?2 = Cancel[num2];

num?2 = Simplify[numZ2];

num3 = delta?2(c33 delta”2 - c44 omega’2 - c13 kappa3);

num3 = Collect[num3,c44];

num3 = Cancel[num3/denom};

num4 = (c11 kappa4 - c44 omega”2 - c13 delta”2)/(c13+c44);

num4 = Cancel{num4];

num4 = Simplify[num4];

c44 = 5.7*1016;

alpha = c44/(rho*c1/2) omega”2 - delta’2;

beta = c44/(rtho*c2/2) omega’2 - delta?2;

xil = Sqrtfkappa3];

xi2 = Sqrt[kappa4];

xi3 = Sqrt[kappaS];

xi4 = Sqrt[Abs[alpha]];

xi5 = Sqrt{Abs[beta]];

The next Mathematica instructions define the components of the determinant [L].

L11 = (2c66/c44 n (n-1) + num1 (s/(1-5))*2)*
BesselJ[n,xil s/(1-s)] + 2c66/c44 xil s/(1-s) BesselJ[n+1,xil s/(1-5)];

L12 = (2c66/c44 n (n-1) + num1 (s/(1-s))*2)*
BesselY[n,xil s/(1-s)] + 2c¢66/c44 xil s/(1-s) BesselY[n+1,xil s/(1-s)];

L13 = ((2c66/c44 n (n-1) + num?2 (s/(1-s))"2)*
BesselJ[n,xi2 s/(1-s)] + 2c66/c44 xi2 s/(1-s) BesselJ[n+1,xi2 s/(1-s)]);

L14 = ((2c66/c44 n (n-1) + num2 (s/(1-s))A2)*
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BesselY[n,xi2 s/(1-s)] + 2c66/c44 xi2 s/(1-s) Bessel Y{n+1,xi2 s/(1-s)]);

L15 = 2¢66/c44 n( (n-1) BesselJ[n,xi3 s/(1-s)] - xi3 s/(1-s)*
Bessell[n+1,xi3 s/(1-s)]);

L16 = 2¢66/c44 n( (n-1) BesselY[n,x13 s/(1-s)] - xi3 s/(1-s)*
BesselY[n+1,xi3*s/(1-s)]);

L17 = (rhol/rho omega’2) (s/(1-s))*2 Bessell[n,xi4 s/(1-s)];
L18=0;

L21 = num3 (n BesselJ[n,xil s/(1-s)] - xil s/(1-s) BesselJ]
n+1, xil s/(1-s)});

L22 = num3 (n BesselY[n,xil s/(1-s)] - xil s/(1-s) Bessel Y[
n+1, xil s/(1-s)]);

L23 = num4 (n Bessell[n,xi2 s/(1-s)] - xi2 s/(1-s) BesselJ[
n+1, xi2 s/(1-s)]);

L24 = num4 (n BesselY[n,xi2 s/(1-s)] - xi2 s/(1-s) Bessel Y[
n+1, xi2 s/(1-s)]);

L25 =-n delta”2 Bessell[n,xi3 s/(1-s)];
L26 = -n delta”2 BesselY[n,xi3 s/(1-s)];
L27=0;

L28=0;

L31 = c66/c44 (-2n((n-1) Bessell[n,xil s/(1-s)] -
xil s/(1-s) BesselJ[n+1,xil s/(1-s)]));

L32 =c66/c44 (-2n((n-1) BesselY[n,xil s/(1-s)] -
xil s/(1-s) BesselY[n+1,xil s/(1-s)]));

L33 =c66/c44 (-2n((n-1) Bessell[n,xi2 s/(1-s)] -
xi2 s/(1-s) Bessell[n+1,xi2 s/(1-s)]));

L34 = c66/c44 (-2n((n-1) BesselY[n,xi2 s/(1-s)] -
xi2 s/(1-s) BesselY[n+1,xi2 s/(1-s)]));
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L35 = c66/c44 ((kappa5 (s/(1-s))*2 - 2n (n-1)) BesselJ[n,xi3*
s/(1-s)] -2 xi3 s/(1-s) BesselJ[n+1,xi3 s/(1-s)]);

L36 = c66/c44 ((kappaS (s/(1-s))A2 - 2n (n-1)) BesselY[n,xi3*
s/(1-s)] -2 xi3 s/(1-s) BesselY[n+1,xi3 s/(1-s)]);

L37=0;

L38 =0;

L41 = n BesselJ[n,xil s/(1-s)] - xil s/(1-s) Bessell[n+1,xil s/(1-s)];
L42 =n BesselY[n,xil s/(1-s)] - xil s/(1-s) BesselY[n+1,xil s/(1-s)];
143 = n Bessell[n,xi2 s/(1-s)] - xi2 s/(1-s) BesselJ[n+1,xi2 s/(1-5)];
L44 = n Bessel Y[n,xi2 s/(1-s)] - xi2 s/(1-s) BesselY[n+1,xi2 s/(1-s)];
L45 = n Bessell[n,xi3 s/(1-s)];

L46 = n BesselY[n, xi3 s/(1-s)];

L47 = -(n Bessell[n,xi4 s/(1-s)] + xi4 s/(1-s) Bessell[n+1,xi4 s/(1-5)]);
L48 =0;

L51 = (2c66/c44 n (n-1) + num1 (1/(1-s))*2)*
Bessell[n,xil 1/(1-s)] + 2c66/c44 xil 1/(1-s) BesselJ[n+1,xil 1/(1-s)];

L52 = (2c66/c44 n (n-1) + num1 (1/(1-s))*2)*
BesselY[n,xil 1/(1-s)] + 2c66/c44 xil 1/(1-s) BesselY[n+1,xil 1/(1-s)];

L53 = ((2c66/c44 n (n-1) + num2 (1/(1-s))*2)*
BesselJ[n,xi2 1/(1-s)] + 2¢66/c44 xi2 1/(1-s) BesselJ[n+1,xi2 1/(1-s)]);

L54 = ((2c66/c44 n (n-1) + num2 (1/(1-s))*2)*
BesselY[n,xi2 1/(1-s)] + 2¢66/c44 xi2 1/(1-s) BesselY[n+1,xi2 1/(1-s)]);

L55 = 2c66/c44 n( (n-1) Bessell[n,xi3 1/(1-s)] - xi3 1/(1-s) *
BesselJ[n+1,xi3 1/(1-s)]);

L56 = 2c66/c44 n( (n-1) BesselY[n,xi3 1/(1-s)] - xi3 1/(1-s) *




BesselY[n+1,xi3 1/(1-s)]);
L57=0;
L58 = (rho2/rho) omega’2 (1/(1-5))*2 BesselK[n,xi5 1/(1-s)];

L61 = num3 (n BesselJ[n,xil 1/(1-s)] - xil 1/(1-s) BesselJ]
n+1, xil 1/(1-s)]);

L62 = num3 (n BesselY[n,xil 1/(1-s)] - xil 1/(1-s) Bessel Y[
n+1, xil 1/(1-s)]);

L63 = num4 (n Bessell[n,xi2 1/(1-s)] - xi2 1/(1-s) BesselJ|
n+1, xi2 1/(1-s)]);

L64 = num4 (n BesselY[n,xi2 1/(1-s)] - xi2 1/(1-s) Bessel Y|
n+1, xi2 1/(1-s)]);

L65 = -n deltar2 BesselJ[n,xi3 1/(1-s)];
L.66 = -n delta”2 BesselY[n,xi3 1/(1-s)];
L67 =0;

L68 =0;

L71 = c66/c44 (-2n((n-1) BesselJ[n,xil 1/(1-s)] - xil 1/(1-s)*
Bessell[n+1,xil 1/(1-s)]));

L72 = ¢66/c44 (-2n((n-1) BesselY[n,xil 1/(1-s)] - xil 1/(1-s) *
BesselY[n+1,xil 1/(1-s)]));

L73 = ¢66/c44 (-2n((n-1) BesselJ[n,xi2 1/(1-s)] - xi2 1/(1-s)*
BesselJ[n+1,xi2 1/(1-s)]));

L74 = c66/c44 (-2n((n-1) BesselY[n,xi2 1/(1-s)] - xi2 1/(1-s)*
BesselY[n+1,xi2 1/(1-5)]));

L75 = c66/c44 ((kappaS (1/(1-s))*2 - 2n (n-1)) BesselJ[n,xi3*
1/(1-s)] -2 xi3 1/(1-s) BesselJ[n+1,xi3 1/(1-5)));

L76 = c66/c44 ((kappaS (1/(1-s))*2 - 2n (n-1)) BesselY[n,xi3*
1/(1-s)] -2 xi3 1/(1-s) BesselY[n+1,xi3 1/(1-s)]);
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L77=0;

L78=0;

L81 = n BesselJ[n,xil 1/(1-s)] - xil 1/(1-s) Bessel}[n+1,xi1 1/(1-5)];
L82 =n BesselY[n,xil 1/(1-s)] - xil 1/(1-s) BesselY[n+1,xil 1/(1-s)];
L83 = n BesselJ[n,xi2 1/(1-s)] - xi2 1/(1-s) Bessell[n+1,xi2 1/(1-s)];
184 = n BesselY[n,xi2 1/(1-s)] - xi2 1/(1-s) BesselY[n+1,xi2 1/(1-s)};
L85 = n Bessell[n,xi3 1/(1-s)];

L86 = n BesselY[n,xi3 1/(1-s)};

L87 =0;

L88 = -(n BesselK[n,xi5 1/(1-s)] - xi5 1/(1-s) BesselK[n+1,xi5 1/(1-s)]);

“Myroot” is a Mathematica program (somewhat like a subroutine) that is called with
the arguments x, y, z. These arguments are the “first guess” root locations. This pro-
gram uses Mueller’ s method to locate the closest root to the first guess. If a root is not
found after 25 iterations, the program stops. The criteria for convergence is that the
difference between the current value of a possible root and the last calculated value is
less than 1x10/-10.

myroot := For[i=1,i<25,i++,(

q = (z-y)/(y-%);

omega = X;

xil = Sqrt[kappa3];

xi2 = Sqrt[kappa4];

xi3 = Sqrt[kappaS];

xi4 = Sqrt[Abs[alpha]];

xi5 = Sqrt[Abs[beta]];

matrix = {{N[L11],N[L12],N[L13],N[L14],N[L15],N[L16],N[L17],N[L18]}},
{N[L21],N[L22],N[L23],N[L24],N[L25],N[L26],N[L27],N[L28]},
{N[L31],N[L32],N[L33],N[L34],N[L35],N[L36],N[L37],N[L38]},
{N[LA1],N[L42],N[LA43],N[LA44],N[L45],N[L46],N[LA7],N[LA8]},
{N[L51],N[L52],N[L53],N[L54],N[L55],N[L56],N[L57],N[L58]},
{N[L61],N[L62],N[L63],N[L64],N[L65],N[L66],N[L67],N[L68]},
{N[L71],N[L72],N[L73],N[L74],N[L75],N[L76],N[L77],N[L78]},




{N[L81],N[L82],N[L83],N[L84],N[L85],N[L86],N[L87],N[L88]}};

px = Det[matrix];

omega =Yy;

xil = Sqrt[kappa3];

xi2 = Sqrt[kappa4];

xi3 = Sqrt[kappa5];

xi4 = Sqrt[Abs[alpha]];

xi5 = Sqrt[Abs[beta]];

matrix = { {N[L11],N[L12],N[L13],N[L14],N[L15],N[L16],N[L17],N[L18]}},
{N[L21],N[L22],N[L23],N[L24],N[L25],N[L26],N[1.27],N[L28]},
{N[L31],N[L32],N[L33],N{L34],N[L35],N[L36],N[L37],N[L38]},
{N[LA41],N[L42],N[L43],N[L44],N[L45],N[L46],N[1L47],N[LA48]},
{N[L51],N[L52],N[L53],N[L54],N[L55],N[L56],N{L57],N[L58]},
{N[L61],N[L62],N[L63],N[L64],N[L65],N[L66],N[L67],N[L68]},
{N[L71],N[L72],N[L73],N[L74],N[L75],N[L76],N[L77],N[L78]},
{N[L81],N[L82],N[L83],N[L84],N[L85],N[L86],N[L87],N[L88]}};

py = Det[matrix];

omega = z;

xil = Sqrt[kappa3];

xi2 = Sqrt[kappad];

xi3 = Sqrt[kappa$5];

xi4 = Sqrt[Abs[alpha]];

xi5 = Sqrt[Abs[beta]];

matrix = { {N[L11],N[L12],N[L13],N[L14],N[L15],N[L16],N[L17],N[L.18]},
{N[L21],N[L22],N[L23],N[L24],N[L25],N[L26],N[L27],N[L28]},
{N[L31],N[L32],N[L33],N[L34],N[L35],N[L36],N[L37],N[L38]},
{N[L41],N[L42],N[L43],N[L44],N[LA45],N[L46],N[L47],N[LA48]},
{N[L51],N[L52],N[L53],N[L54],N[L55],N[L56],N[L57],N[L58]},
{N[L61],N[L62],N[L63],N[L64],N[L65],N[L66],N[L67],N[L68]},
{N[L71],N[L72],N[L73],N[L74],N[L75],N[L76],N[L77],N[L78]},
{N[L81],N[L.82],N[L83],N[L.84],N[L85],N[L86],N{L.87],N[L88]}};

pz = Det[matrix];

a=qpz-q(1+q) py + g"2 px;

b=(2q+ 1) pz- (1 + Q"2 py + g2 px;

c=(1+q) pz;

denl =b + Sqrt[b*2 -4 ac];

den2 =b - Sqrt[b*2 - 4 ac];

d = Abs[denl];

e = Abs[den2];

If[d > e, denom = denl, denom = den2];

next = Chop|z - (z - y) (2 ¢/ denom),10/-6};

X =Y; Y =Z; Z=next;

f = Chop[z-y];
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If[f != 0, Continue[], Return[next]];

omega = next;

xil = Sqrt{kappa3];

xi2 = Sqrt[kappa4];

xi3 = Sqrt[kappa5];

xi4 = Sqrt[Abs[alpha]];

xi5 = Sqrt{Abs[beta]];

matrix = { {N[L11],N[L12],N[L13],N[L14],N[L15],N[L16],N[L17],N[L18]},
{N[L21],N[L22],N[L23],N[L24],N[L25],N[L26],N[L27],N{L.28]},
{N[L31],N[L32],N[L33],N[L34],N[L35],N[L36],N[L37],N[L38]},
{N[LA41],N[L42],N[LA43],N[L44],N[LA45],N[LA6],N[L47],N[LA8]},
{N[L51],N[L52],N[L53],N[L54],N[L55],N[L56],N[L57],N[L58]},
{N[L61],N[L62],N[L63],N[L64],N[L65],N[L66],N[L67],N[L68]},
(N[L71],N[L72],N[L73],N[L74],N[L75],N[L76],N[L77],N[L78]},
{N[L81],N[L82],N[L83],N[L84],N[L85],N[L86],N[L87],N[L88]}};

g = Chop[Det[matrix]];

Iffg != 0,Continue[],Return[next]])]

The following is a representative set of Mathematica instructions to locate two roots for
two branches. Typically, a root if found in 6 or 7 iterations. Several of these sets of in-
structions can be input at once to run the root searches unattended. The answers, which
are displayed on the screen, and can be saved in a text file, are shown in Italics.

delta = N[.005*Pi]
x=.26;y=.27;z=.28;myroot
omega = 0.2705293700078156
x=.39;y=.395;z=.4;myroot
omega = 0.3950075764334804

The numerical computations were performed using machine precision numbers, where
precision refers to the total number of significant decimal digits. In the case of the com-
puters used to compute the results shown in the body of the dissertation, the machine
precision was 16. The accuracy of a root is the number of significant decimal digits to
the right of the decimal point.




APPENDIX C. MATERIAL PROPERTIES

teel
' 10 2
Young's modulus: 21 x 107" N/m
Poisson‘s ratio: 0.3
Density: 7800 kg/m"
Rubber
) 7 2
Young‘s modulus:1.5 x 10° N/m
Poisson‘s ratio: 0.45
Density: 1000 kg/m’
Inner r Flui
Acoustic phase velocity: 1500 m/sec’
Density: 1000 kg/m3
. . ial i

Young*s modulus: 1.5 x 10’ N/m’
Poisson‘s ratio: 0.45

Density: 1000 kg/m’
Volume fraction: 0.9
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Composite material reinforcing fibers

[ o]

Young*s modulus: 5.5 x 10° N/m
Poisson‘s ratio: 0.15
Density: 1140 kg/m3
Volume fraction: 0.1




APPENDIX D. MATHEMATICA PROGRAM TO DETERMINE

THE EFFECTIVE ELASTIC CONSTANTS

This is a Mathematica script file to determine the elastic constants of a homogeneous,
transversely isotropic material. The comments and instructions in Italic are not Math-
ematica commands. The Mathematica commands can be typed or cut and pastedinto a
Mathematica session to produce the results shown in Italics.

First, we define Kronecker’s delta, the unit vector {m}, and the symmetry of the com-
ponents of the strain tensor.

kroneckerDelta[i_,j_] := If]i==j,1,0]

m[p_.q_] := m[p] m[q]

eps[2,1]}=eps[1,2]
eps[1,3]=eps[3,1]
eps[3,2]=eps[2,3]

The following is equation 2.6.

stress[i_,j_] := Expand[ kroneckerDelta[i,j] (c1 Sum[eps[k.k],{k,1,3}] +
¢2 Sum[m[p,q] eps[p.ql.{p,1,3},{q,1,3}]) + m[i,j] (c2 Sum[eps[k.k],{k,1,3}] +
c3 Sum[m{p.q] eps[p.ql, {p,1,3},{q,1,3}]) + c4 epsli,jl +
¢5 (Sum[ml(i,p] eps(p,jl, {p,1,3}] + Sum[m(j,p] eps[p.i].{p,1,3}1) I;

When the direction cosines are defined as m[1] = 0, m{2] = 0, m[3] = 1, the elastic
constants are found from the equations below.

m[1] =0
m[2] =0
m[3] = 1

c11 = Simplify[Coefficient[stress[1,1],eps[1,1]]]
c12 = Simplify[{Coefficient{stress[1,1],eps[2,2]]]
c13 = Simplify[Coefficient[stress[1,1],eps[3,3]]]
c14 = Simplify[Coefficient[stress[1,1],eps[2,3]]]
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c15 = Simplify[Coefficient[stress[1,1],eps[3,1]]]
¢16 = Simplify[Coefficient[stress[1,1],eps[1,2]]]

c21 = Simplify[Coefficient[stress[2,2],eps[1,1]]]
c22 = Simplify[Coefficient[stress[2,2],eps[2,2]]]
c23 = Simplify[Coefficient[stress[2,2],eps[3,3]]]
c24 = Simplify[Coefficient[stress[2,2],eps[2,3]]]
¢25 = Simplify[Coefficient[stress{2,2],eps[3,1]]]
c26 = Simplify[Coefficient[stress[2,2],eps[1,2]]]

c31 = Simplify[Coefficient[stress[3,3],eps[1,1]]]
¢32 = Simplify[Coefficient[stress[3,3],eps[2,2]]]
¢33 = Simplify[Coefficient[stress[3,3],eps[3,3]]]
¢34 = Simplify[Coefficient[stress[3,3],eps[2,3]]]
¢35 = Simplify[Coefficient[stress[3,3],eps[3,1]]]
c36 = Simplify[Coefficient[stress[3,3],eps[1,2]]]

c41 = Simplify[Coefficient[stress[2,3],eps[1,1]]]
c42 = Simplify[Coefficient[stress[2,3],eps[2,2]]]
c43 = Simplify[Coefficient[stress[2,3],eps[3,3]]]
c44 = Simplify[Coefficient[stress[2,3],eps[2,3])/2]
c45 = Simplify[Coefficient[stress[2,3],eps[3,1]1/2]
c46 = Simplify[Coefficient[stress[2,3],eps[1,2]1/2]

c51 = Simplify[Coefficient[stress[3,1],eps[1,1]]]
¢52 = Simplify[Coefficient[stress[3,1],eps[2,2]]]
¢53 = Simplify[Coefficient[stress[3,1],eps[3,3]]]
c54 = Simplify[Coefficient[stress[3,1],eps[2,3]1/2]
c55 = Simplify[Coefficient[stress[3,1],eps[3,1]1/2]
¢56 = Simplify[Coefficient[stress[3,1],eps[1,2]]/2]

c61 = Simplify[Coefficient[stress[1,2],eps[1,1]]]
c62 = Simplify[Coefficient[stress[1,2],eps[2,2]]]
¢63 = Simplify[Coefficient[stress[1,2],eps[3,31]]
c64 = Simplify[Coefficient[stress[1,2],eps[2,3]1/2]
c65 = Simplify[Coefficient{stress[1,2],eps[3,1]1/2]
c66 = Simplify[Coefficient[stress[1,2],eps[1,2]1/2]

The answers are as follows:
cll =cl +c4

cl2 =cl
cl3=cl +c2
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c33=cl +2c2
c44 = (c4 + ¢5)12
c66 = c4/2

When the following relationships between the constants cl, c2, c3, ¢4, and c5 and the

more familiar engineering constants are defined,

cl=bt-gt

c2=Q2vl-1)bt+gt
c3=El+(2vl-1)A2bt-4 gl + gt
c4d=2gt

cS5=2gl-2gt

the elastic constants, in terms of the engineering constants simplify to:

cll =bt+ gt

cl2 =bt-gt

cl3 =2 btvl

¢33 = El + 4 btvin2
c44 = gl

c66 = gt

When the cylinder is made from a fiber reinforced matrix,
the effective properties can be found from

El=Ef Vf + Em Vm
Et = (Ef Em)/(Vm Ef + Vf Em)
vl=Vmvm + Vf vf
vt=vm
= (gm gf)/(Vm gf + Vf gm)
gt = Et/(2(1+vt))
rho = pf Vf + pm Vm
bt =.5 Et/(1-vt-2viI*2 EYEl)

The following properties were used for a soft rubber matrix
reinforced with nylon cords

Ef = 5.5%1079

Em = 1.5%10~7

vm = 0.45

vf=0.15

gm = Em/(2(1+vm))
gf = Ef/(2(1+vf))
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pm = 1000
pf=1140
V{=0.10
Vm =0.90

The resultant effective properties are

El=5.635*10"8
Et = 1.66616*10"7
vi=042

vt =045

gl =5.74575*10"6
gt = 5.74539*106
bt = 1.54398*10"7
rho = 1014

The elastic constants become

rho = 1014

cll =2.11851*10"7
cl2 = 9.69438*10"6
cl3 = 129694*10"7
c33 = 5.74394*10"8
c44 = 5.74575*10"6
c66 = 5.74539*%10"6

The above components are normalized for numerical computations

cll =3.6871 c44 = 3.7*c44
cl12 = 1.68723 c44 = 1.7*c44
cl13 =225722 c44 = 2.3%c44
€33 = 99.9686 c44 = 100*c44
€66 = 0.999937 c44 = c44
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